Browse

You are looking at 11 - 20 of 29,727 items for

  • Refine by Access: User-accessible Content x
Clear All
Open access

Jesse J. Murray, Gulnoz Hisamutdinova, Germán V. Sandoya, Richard N. Raid, and Stephanie Slinski

Fusarium wilt of lettuce is caused by the pathogen Fusarium oxysporum f. sp. lactucae (Fol) and is a growing threat to global lettuce production. Fol was first detected in Florida in 2017 and was subsequently confirmed as race 1. Management strategies for this long-persisting soil pathogen are limited, time-consuming and expensive, and they may lack efficacy. Identifying diverse sources of genetic resistance is imperative for breeding adapted cultivars with durable resistance. The objectives of this study were to identify sources of resistance against a race 1 isolate of Fol in Florida, delineate the relationship between foliar and taproot symptoms, and investigate the inheritance of resistance and partial resistance in two F2 populations. Thirteen experiments were conducted in greenhouse and field locations to characterize the diversity of genetic resistance in the genus Lactuca. Leaf cultivars Dark Lollo Rossa and Galactic; romaine breeding lines 43007, 60182, and C1145; and iceberg breeding line 47083 consistently exhibited low foliar and taproot disease symptoms. Resistance was not identified among the wildtype Lactuca or primitive plant introductions (PI) in this study based on taproot symptoms. An additional test was conducted to study the segregation pattern of Fol resistance between one resistant and one susceptible accession (R × S) and one partial resistant and one susceptible accession (PR × S). The F2 population from ‘60182 × PI 358001-1’ fit the expected segregation ratio for a single recessive locus model, whereas the ratio for ‘Dark Lollo Rossa × PI 358001-1’ did not fit either recessive or dominant single locus models. These sources of resistance are potential candidates for developing commercial cultivars with multiple resistance loci against Fol race 1, especially for the Florida lettuce production system.

Open access

Manoj Chhetri and Charles Fontanier

Objective methods of estimating green coverage using digital image analysis have been used increasingly by turfgrass scientists. The objective of our research was to evaluate the effectiveness of Canopeo, a relatively new smartphone application, for estimating green coverage of bermudagrass (Cynodon dactylon) emerging from winter dormancy, with or without colorants. A field study was conducted on a research ‘U3’ bermudagrass fairway in Stillwater, OK, during Spring 2019 and 2020. The experiment was conducted as a randomized complete block design with three colorant treatments: Endurant Fairway (FW), Endurant Perennial Ryegrass (PR), and an untreated control. Green coverage of the turfgrass canopy was determined weekly from mid-March to early May using a digital camera and ImageJ software, and a smartphone and the Canopeo application. Green coverage estimates from Canopeo correlated strongly (r = 0.91) with those from ImageJ when no colorants were applied. Correlation between Canopeo and ImageJ was diminished under plots treated with colorants. Canopeo is an effective tool for estimating green coverage of living turfgrasses, but additional calibration may be required for acceptable performance when evaluating greenness of colorant-treated turfgrasses.

Open access

Lauren Fessler, Amy Fulcher, Liesel Schneider, Wesley C. Wright, and Heping Zhu

Nursery producers are challenged with growing a wide range of species with little to no detectable damage from insects or diseases. Growing plants that meet consumer demand for aesthetics has traditionally meant routine pesticide application using the most time-efficient method possible, an air-blast sprayer, despite its known poor pesticide application efficiency. New variable-rate spray technology allows growers to make more targeted applications and reduce off-target pesticide loss. In this study, a prototype laser-guided variable-rate sprayer was compared with a traditional air-blast sprayer. Pesticide volume, spray application characteristics, and the control of powdery mildew were evaluated over the course of two growing seasons. Spray application characteristics were assessed using water-sensitive cards (WSCs) and DepositScan software. This prototype sprayer reduced pesticide volume by an average of 54% across both years despite being tested against a low rate (<250 L⋅ha−1). In 2016, the conventional sprayer had more than double the deposit density on target WSCs among distal trees than the variable-rate sprayer; however, within proximal trees, there was no difference between the two sprayer types. In 2017, when the trees were larger, within both the distal and proximal trees, the conventional sprayer had greater deposit density on target WSCs than the variable-rate sprayer. In 2016, coverage on target WSCs was nearly 7-fold greater with the conventional treatment than with the variable-rate treatment. In 2017, when trees were larger, there was greater coverage on target WSCs in proximal trees (3.8%) compared with those in distal trees (1.0%) regardless of the sprayer type. This variable-rate spray technology provided acceptable control of powdery mildew severity on individual branches and whole trees and maintained the incidence of powdery mildew to levels comparable to that occurring among trees sprayed with a traditional air-blast sprayer. Therefore, the variable-rate spray technology has the potential to effectively control disease, dramatically reduce the pesticide footprint, and preserve natural resources such as ground and surface water, soil, and beneficial insects found within and around nurseries.

Open access

Marife B. Anunciado, Larry C. Wadsworth, Shuresh Ghimire, Carol Miles, Jenny C. Moore, Annette L. Wszelaki, and Douglas G. Hayes

Plastic mulch films contribute to improved crop yield and quality for vegetable and small fruit cropping systems. Although the single-season agronomic performance of conventional polyethylene mulches and soil-biodegradable mulches (BDMs) are similar, over time BDMs can begin to break down during storage and subsequently not provide season-long soil coverage. In this study, the changes in physicochemical properties of BDMs were investigated over 3 years of indoor storage (2015–18) under ideal environmental conditions in two laboratories. Mulches evaluated were black, 20–40 µm thick, suitable for annual vegetable production, and included three BDMs: two polybutylene adipate terephthalate (PBAT)-enriched mulches that are commercially available in North America, an experimental polylactic acid (PLA) and polyhydroxyalkanote-based film, and a conventional polyethylene mulch as a control. Tensile properties, specifically peak load and elongation at maximum tensile stress, decreased during storage, particularly for the PBAT-based BDMs, indicating a loss of strength. During year 3 of storage, the tensile properties declined extensively, suggesting embrittlement. The average molecular weight of PLA and PBAT slightly increased during year 1, perhaps due to release of monomers or oligomers, and then decreased extensively during years 2 and 3 due to hydrolysis of ester bonds (confirmed by Fourier transform infrared spectroscopic analysis). The structural integrity of BDMs was assessed during years 2 and 3 of the study (2017–18) in field trials at the locations where they were stored, Knoxville, TN, and Mount Vernon, WA, for vegetable production. The degradation of the BDMs during the cropping season was higher in 2018 compared with 2017, suggesting that degradation of mechanical and chemical properties while in storage may have contributed to rapid degradation of mulches in the field. In summary, BDMs undergo degradation even under ideal storage conditions and may perform best if deployed within 2 years of their receipt date. The farmer should verify that proper storage conditions have been used before receipt and that manufacturing date precedes the receipt date by no more than 6 months.

Open access

Bernardita Sallato, Matthew D. Whiting, and Juan Munguia

‘WA 38’ is a new apple (Malus domestica Borkh.) cultivar, released by Washington State University (WSU) in 2017. An unknown disorder, ‘‘green spot’’ (GS), dark green halos in the epidermis, with necrotic, corky, and oxidated cortical tissue underneath the damaged epidermis, leads to unmarketable fruit and has become a threat to the adoption and profitability of ‘WA 38’, with young and mature orchards exhibiting up to 60% incidence in 2020. Given the apparent susceptibility of ‘WA 38’ to GS, this research investigated GS relation with nutrient levels in fruit. Research was carried out in 2018 and 2019 in a ‘WA 38’ apple block planted in 2013, on ‘Geneva 41’ (‘G.41’) and ‘M.9-Nic 29’ (‘M.9’) rootstocks. In both years, fruit number per tree, fruit weight, and fruit diameter were evaluated in 18 trees per treatment, from both rootstocks. From each tree, fruit were classified for presence or absence of GS, and subsequently analyzed for nutrient concentration in the peel and in the flesh, nutrient extraction, and total nutrient content, on an individual apple basis. Apples with GS had higher nitrogen (N) and magnesium (Mg) levels in the peel, regardless of year and rootstock. Apples grown on ‘G.41’ rootstock exhibited higher GS incidence and reduced crop load in both years; reduced size and fruit diameter were exhibited only in 2018. Fruit on ‘G.41’ had higher N, potassium (K), and Mg in the flesh and higher N and Mg in the peel, with lower levels of calcium (Ca) in the flesh and peel; however, only in 2018, with no differences in 2019. GS in ‘WA 38’ apples appears to be another Ca-related disorder in which excessive vigor, rootstock, and N and Mg excess are predisposing factors for its development.

Open access

Runshi Xie, Bin Wu, Mengmeng Gu, Stacey R. Jones, James Robbins, Allen L. Szalanski, and Hongmin Qin

Crapemyrtle bark scale (CMBS; Acanthococcus lagerstroemiae Kuwana) is an invasive insect that was first discovered in the United States in 2004. The polyphagous feeding habit of CMBS has allowed it to infest a wide range of plant species beyond its primary host, Lagerstroemia. Using molecular approaches, we studied the genetic relationships between CMBS specimens and their hosts from different geographic locations. Naturally occurring CMBS infestations were confirmed on American beautyberry (Callicarpa americana L.), a native plant species in the United States, and spirea (Spiraea L.). The new infestation of CMBS found on Spiraea raises the alarm that other economically important crops in the Amygdaloideae subfamily (subfamily under Rosaceae) might be susceptible to CMBS attacks.

Open access

Lakshmy Gopinath, Dennis L. Martin, Justin Quetone Moss, Yanqi Wu, Shuhao Yu, and James R. Underwood

Suitable tensile strength is essential for sod harvest, transport, and installation. Thirty-nine bermudagrass (Cynodon sp.) entries were evaluated for sod handling quality (SHQ) and sod tensile strength (STS) during 2014–15. The SHQ (a discontinuous qualitative parameter) was evaluated using a 1 to 5 scale with 1 = complete pad separation during handling and 5 = no cracking or separation in the sod pad with excellent quality. The STS (a quantitative parameter) was determined using the force required to shear/separate the sod pad. Sod harvests were conducted at 14, 22, and 24 months after planting (MAP). The entry, harvest date, and their interaction affected STS and SHQ. Entries OKC 1302 and 12-TSB-1 had greater STS than ‘Patriot’ but less STS than ‘Latitude 36’, ‘Tifway’, ‘Astro’, and ‘TifGrand’. The seeded entry PST-R6T9S had the lowest STS and SHQ. The overall mean STS and SHQ were lowest at 22 MAP, which could be attributed to the slow recovery of the entries after Winter 2014. A strong positive correlation (r = 0.92) between STS and SHQ suggests that SHQ can be used as a rapid field method to estimate suitability for sod harvest. A predictive linear relationship between overall STS and overall SHQ (r 2 = 0.85) found predicted STS values of 8.5, 22.6, 36.8, and 51.0 kg⋅dm–2 for overall mean SHQ ratings of 2, 3, 4, and 5, respectively. The results of this work will help sod producers in cultivar selection and will aid breeders in making commercialization decisions.

Open access

Giovanni Antoniaci Caputo, Sandra Branham, and Matthew Cutulle

Poor competitive ability and limited herbicide options make weed management of Brassica crops difficult. Growers often adopt the use of transplants, which is less efficient in terms of time, material, and labor when compared with direct seeding, resulting in higher prices per unit. Seed treatment with protective compounds could decrease crop injury from preemergent (PRE) herbicides making it profitable to direct-seed Brassica plants for production. Research was conducted to evaluate the ability of three candidate safeners [24-epibrassinolide, melatonin, and ascorbic acid (AsA)] to reduce injury caused by four herbicides (S-metolachlor, pyroxasulfone, halosulfuron, and mesotrione) applied PRE on the collard green cultivar Top Bunch and turnip cultivar Purple Top White Globe. Two independent greenhouse trials were conducted at the Clemson University Coastal Research and Education Center in Charleston, SC. Visual injury of the treated plants was evaluated weekly and dry mass was collected 21 days after treatment. Seed treatment did not reduce injury efficiently caused by pyroxasulfone, halosulfuron, and mesotrione; all doses were lethal for both crops. However, collard seeds treated using melatonin and AsA had 66% and 54% less injury caused by S-metolachlor at 514 g⋅ha–1 a.i., respectively. On turnips, melatonin was the only treatment that reduced the S-metolachlor damage on seedlings, with 43% less injury than untreated seedlings. Plant injury and plant weight correlated significantly for both Brassica crops. The reduction in injury caused by S-metolachlor when seeds were treated with melatonin and AsA validated those compounds’ protective ability. Seed treatment with melatonin could be combined with PRE applications of S-metolachlor to overcome the low weed competitive ability of these species early in the season.

Open access

Celina Gómez, Megha Poudel, Matias Yegros, and Paul R. Fisher

The objectives were to characterize and compare shrinkage (i.e., transplant loss) and growth of tissue-cultured blueberry (Vaccinium corymbosum) transplants acclimated in greenhouses or indoors under 1) different photosynthetic photon flux densities (PPFDs) (Expt. 1); or 2) spectral changes over time using broad-spectrum white (W; 400 to 700 nm) light-emitting diodes (LEDs) without or with red or far-red (FR) radiation (Expt. 2). In Expt. 1, ‘Emerald’ and ‘Snowchaser’ transplants were acclimated for 8 weeks under PPFDs of 35, 70, 105, or 140 ± 5 µmol·m‒2·s‒1 provided by W LED fixtures for 20 h·d−1. In another treatment, PPFD was increased over time by moving transplants from treatment compartments providing 70 to 140 µmol·m‒2·s‒1 at the end of week 4. Transplants were also acclimated in either a research or a commercial greenhouse (RGH or CGH, respectively). Shrinkage was unaffected by PPFD, but all transplants acclimated indoors had lower shrinkage (≤4%) than those in the greenhouse (15% and 17% in RGH and CGH, respectively), and generally produced more shoot and root biomass, regardless of PPFD. Growth responses to increasing PPFD were linear in most cases, although treatment effects after finishing were generally not significant among PPFD treatments. In Expt. 2, ‘Emerald’ transplants were acclimated for 8 weeks under constant W, W + red (WR), or W + FR (WFR) radiation, all of which provided a PPFD of 70 ± 2 μmol·m−2·s−1 for 20 h·d−1. At the end of week 4, a group of transplants from WR and WFR were moved to treatment compartments with W (WRW or WFRW, respectively) or from W to a research greenhouse (WGH), where another group of transplants were also acclimated for 8 weeks (GH). Shrinkage of transplants acclimated indoors was also low in Expt. 2, ranging from 1% to 4%. In contrast, shrinkage of transplants acclimated in GH or under WGH was 37% or 14%, respectively. Growth of indoor-acclimated transplants was generally greater than that in GH or under WGH. Although growth responses were generally similar indoors, plants acclimated under WFR had a higher root dry mass (DM) and longer roots compared with GH and WGH.