Browse

You are looking at 141 - 150 of 29,974 items for

  • Refine by Access: User-accessible Content x
Clear All
Open access

Marcia R. Ostrom, David S. Conner, Heleene Tambet, Katherine Selting Smith, J. Robert Sirrine, Philip H. Howard, and Michelle Miller

Hard cider is an important and growing part of the U.S. beverage market. Previous research suggests there is an opportunity for growers interested in selling locally grown cider-specific apple (Malus domestica) varieties. However, cider apple growers face production, distribution, and marketing challenges. This article fills a gap in the literature using survey data from four states. We find that growers are interested in expanding cider apple production to supply local craft cider makers, but may be constrained by gaps in current production information, such as how to grow cider varieties. Uncertainty about the regional suitability of different varieties, disease management, and the willingness of cider makers to pay a premium for cider apple production constitute significant concerns. Survey respondents most commonly requested information on horticultural qualities of varieties and disease management. Top marketing needs include the ability to garner premium prices. A regional “terroir” approach to cider marketing holds promise.

Open access

Isha Poudel and Anthony L. Witcher

Weeds are a major problem in cutting propagation and compete with the main crop for water, sunlight, and nutrients, thus reducing growth and marketable quality of rooted cuttings. Due to the high labor cost of hand weeding, mulches can be an alternative method for weed control in the propagation environment. The objective of this research was to determine the effect of mulches (coarse vermiculite, rice hulls, paper pellets, and pine pellets) on rooting of stem cuttings and weed control when applied at 0.5- and 1-inch depths. Cuttings of three plant species [‘Nanho Blue’ butterfly bush (Buddleja davidii), ‘Catawba’ crape myrtle (Lagerstroemia indica), ‘Phantom’ hydrangea (Hydrangea paniculata)] were stuck in 2.5-inch-diameter containers filled with pine bark substrate and treated with mulch. In a separate study, seeds of four weed species [creeping woodsorrel (Oxalis corniculata), hairy bittercress (Cardamine hirsuta), large crabgrass (Digitaria sanguinalis), mulberry weed (Fatoua villosa)] were sown onto the mulch surface. Rooting percentage was unaffected by mulch type or depth for any of the three crop species (‘Nanho Blue’ butterfly bush, ‘Catawba’ crape myrtle, ‘Phantom’ hydrangea). Pine pellets did not affect root dry weight of any crop species, but root length and volume of ‘Catawba’ crape myrtle was reduced by pine pellets at 1-inch depth. Rice hulls slightly reduced the root length and volume of ‘Catawba’ crape myrtle, but the reduction was less than 50%. Pine pellets and paper pellets (both depths) reduced growth of all four weed species. Even though weed seeds germinated in pine and paper pellets, seedlings did not grow large enough to potentially affect crop rooting. In conclusion, pine pellets and paper pellets at 0.5-inch depth can be effective in suppressing weed populations with minimal effect on rooting.

Open access

Stephen C. Smith, Katherine M. Jennings, David W. Monks, David L. Jordan, S. Chris Reberg-Horton, and Michael R. Schwarz

Field studies were conducted in North Carolina in 2019 and 2020 to determine the effect of a reduced-tillage, high-residue rye (Secale cereal) cover crop system on soil health, and growth and storage root yield of sweetpotato (Ipomoea batatas) cultivars having upright (NC04-0531 or NC15-650) or prostrate (Covington or Bayou Belle) vining characteristics. Sweetpotato canopy width expanded quicker in the conventional tillage system than the reduced-tillage rye system. Prostrate sweetpotato cultivars had greater late-season canopy widths than upright cultivars. Soil bulk density of raised beds was greatest in the reduced-tillage rye system, but both systems remained within the U.S. Department of Agriculture recommended range for soil bulk density. The conventional-tillage system resulted in 17% more marketable roots; however, no differences were observed in total marketable root weight between systems. ‘Covington’ and ‘NC15-650’ had greater marketable yield than ‘NC04-0531’ but less marketable yield than ‘Bayou Belle’.

Open access

J. Bryan Webber, Darcy Gordon, Adolfo Rosati, Nicholas Meier, Michael Gold, and Ronald Revord

U.S. chestnut (Castanea sp.) production is expanding as knowledge of seedling cultivation and germplasm advances. Chestnuts have high starch and water content, making them highly perishable; therefore, they require cold storage immediately following harvest. Postharvest spoilage remains a significant area for improvement. Several postharvest fungi (including Fusarium sp. and Penicillium sp.) can infect chestnuts during storage, leading to spoilage and nonsellable nuts. The annual crop losses can reach up to 10%, thereby affecting trees differently. Our research objectives were to 1) evaluate spoilage incidence on the interior (i.e., pellicle, kernel) and exterior (i.e., nutshell) of the nut over the course of 200 days of cold storage on eight cultivars and 2) assess the impact of food contact-approved chlorine solution and 2% peracetic acid (PAA) with 27% hydrogen peroxide prestorage treatments for spoilage suppression on ‘Qing’ nuts. Fourteen timepoints were observed during the study period, each with four replications of 16 nuts. An additional four replicates of 16 ‘Qing’ nuts were treated prestorage and observed over seven time points. The incidence of spoilage was reported as the percentage of nonsellable nuts for each treatment and cultivar at four timepoints. The nut interior showed the highest spoilage incidence after 200 days, with four cultivars having >30% nonsellable nuts. Overall, the cultivars had an average of 10% nonsellable nuts from interior spoilage after 60 days in storage. ‘Hong Kong’ had the highest percentage of nonsellable nuts by the end of the study at 60%, whereas ‘Qing’ and ‘Mossbarger’ had the lowest rates, with only 14% nonsellable nuts. Spoilage of the exterior, although less frequent, is visible to buyers and impacts nut marketability. ‘Kohr’ had the highest percentage of nonsellable nuts because of exterior spoilage (35.9%). ‘Mossbarger’ had the lowest percentage of nonsellable nuts because of exterior spoilage (3.1%). ‘Qing’ nuts treated with 500 ppm chlorine and 100/200 ppm PAA demonstrated reduced exterior spoilage with longer storage times. Prestorage treatment did not show efficacy for reducing interior spoilage. This study provides a preliminary report of evidence that cultivar differences influence the spoilage incidence and supports taking nuts to market within 60 days of harvesting. These preliminary data also inform breeding parent combinations and studies of inheritance for postharvest spoilage tolerance at the University of Missouri Center for Agroforestry breeding program.

Open access

Dan Wang, Yang Yang, Fengyi Li, Sheng Zhou, Guiling Liu, Juan Yang, Wangbin Ye, and Ling Wang

Rhododendron dauricum is an extremely cold hardy, semievergreen, multibranched shrub that is distributed widely throughout northeastern China, Mongolia, Japan, the Korean Peninsula, and Russia (Yang et al., 2020). It grows in a wide range of environmental conditions, from forests to rocky landscapes; produces flower buds during severe winters; and blooms in early spring even if it is covered in snow (Polezhaeva et al., 2018). It is a valuable ornamental landscape species in the Great Khingan Mountains of northeastern China, where the annual average temperature is –22.27 to 9.67 °C (Zhang et al., 2018). It

Open access

Bryan K. Sales, David R. Bryla, Kristin M. Trippe, Carolyn F. Scagel, Bernadine C. Strik, and Dan M. Sullivan

Biochar, as a soil amendment, has been reported to improve plant growth by increasing soil moisture and retaining nutrients. In a previous 12-week greenhouse study with highbush blueberry (Vaccinium hybrid), we found that amending soil with biochar alone or in combination with bokashi (fermented wheat bran) increased plant growth relative to unamended soil. The biochar was produced from mixed conifer species during conversion of wood to energy. In the current study, we aimed to validate the greenhouse findings under field conditions in western Oregon. The specific objectives of this 2-year study were to determine the effect of amending soil with biochar or a combination of biochar and bokashi on growth and early fruit production during establishment of northern highbush blueberry (Vaccinium corymbosum L.). To achieve these objectives, we transplanted ‘Duke’ blueberry plants into soil that was either unamended or amended with biochar or 4:1 (v/v) mixtures of biochar and bokashi or biochar and douglas fir [Pseudotsuga menziesii (Mirb.) Franco] sawdust. Each amendment was either applied in the planting hole or incorporated into the row. A treatment with douglas fir sawdust incorporated into the row was also included and represented the industry standard for the region. Plants grown in soil amended with biochar (in the planting hole or row) had 40% to 74% greater total dry weight at the end of the first growing season and 70% to 82% greater fruit yield in the second season than those grown with no amendments or in soil amended with sawdust. However, leaf Mg concentrations were lower with biochar, suggesting it could limit Mg uptake in blueberry. Soil amended with sawdust, on the other hand, was higher in organic matter, microbial activity, and wet stable aggregates than the other soil treatments but resulted in lower leaf N concentrations during the second year after planting. Unlike in the greenhouse study, biochar had no effect on root colonization by mycorrhizal fungi, and there was no benefit to using biochar with bokashi. Adding 4 L of biochar to the planting hole was considerably more economical than applying it to the row and cost $1320/ha less than the industry standard of incorporating sawdust in the row. These findings indicate that biochar is a promising soil amendment for commercial production of highbush blueberry.

Open access

Kim S. Lewers and John M. Enns

Cordial, a late-season, short-day strawberry (Fragaria ×ananassa Duch. ex Rozier), follows Keepsake as the second cultivar resulting from a U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS) effort at Beltsville, MD, to develop strawberries with increased shelf life (Lewers et al., 2019). ‘Cordial’ and ‘Keepsake’ strawberries had similarly low proportions of fruit rot and degradation in 2 weeks of refrigerated storage compared with other cultivars and breeding selections. ‘Cordial’ has consistently provided very high yields and very low rot with no fumigation or fungicides in an annual plasticulture system at Beltsville, MD. ‘Cordial’ strawberries are

Open access

Sarada Krishnan, Heather Kirk-Ballard, Esther McGinnis, and Lauren Garcia Chance

The retail gardening industry in the United States is expected to reach $50 billion by 2023, and it is a significant driver of the agricultural economy. To meet the corresponding demand for information, consumer horticulture (CH) professionals will need to develop innovative digital outreach, research-based solutions, a concerted recruitment of youth, and enhanced collaborations. To understand the current gaps in CH research and the extent of the involvement of public gardens in CH, surveys were conducted among the two groups, CH/extension researchers and staff of public gardens. The results of the surveys were presented at the virtual conference of the American Society for Horticultural Science on 12 Aug. 2020 during a workshop hosted by the Consumer Horticulture and Master Gardener Professional Interest Group. The workshop included four presentations, and two of those are discussed in this paper: 1) research gaps in CH and 2) bridging the divide between CH and public gardens. Among researchers, even though there was a general understanding of CH, there was a disconnect in participants’ perceptions of the roles of CH in the economy and recreation. The greatest knowledge gap was in basic horticultural practices. Regarding public garden professionals, there needs to be a concerted effort to educate them about CH so they can provide a consistent message to their audiences and the general public.

Open access

Wendell J. Hutchens, Jordan C. Booth, J. Michael Goatley, and David S. McCall

Spring dead spot (SDS), caused by Ophiosphaerella spp., is among the most damaging diseases to hybrid bermudagrass (Cynodon dactylon × transvaalensis) in areas where winter dormancy occurs. Management strategies that aid in turfgrass recovery from SDS damage have not been widely studied. An experiment was conducted in Blacksburg, VA, in 2019 and 2020, to determine the influence of various cultural practices on bermudagrass recovery from SDS damage. Fertility and cultivation were applied in the late spring/early summer, which is earlier than normal for cultivation practices for bermudagrass, to test their effectiveness in aiding bermudagrass recovery from SDS damage. The main effects of fertility and cultivation were arranged in a 2 × 3 factorial design with vertical mowing, solid-tine aerification, and no cultivation applied with urea (48.8 kg⋅ha−1 N) sprayed at trial initiation and 2 weeks later or without urea. Plots were assessed for the percent of SDS throughout the study. Data were analyzed as the percent change relative to the initial assessment to measure bermudagrass recovery. The main effect of fertility increased bermudagrass recovery from SDS damage in both 2019 and 2020. The main effects of vertical mowing and solid-tine aerification reduced bermudagrass recovery from SDS damage in 2020. These data suggest that two properly timed nitrogen fertilization applications at 48.8 kg⋅ha−1 optimized bermudagrass recovery from SDS damage, whereas late spring/early summer cultivation without fertility may inhibit bermudagrass recovery.

Open access

Michael Alden and James E. Faust

The effect of night length (NL) on the flower development of poinsettia (Euphorbia pulcherrima Willd. ex Klotzsch) ‘Prestige Red’ was evaluated. Flower initiation occurred by subjecting plants to a 14-hour NL for 10 or 17 days, termed short-day (SD) treatments, and then transferring the plants to each of four NL treatments (11, 12, 13, or 14 hours) to observe the effects of NL on flower development. The plants grown continuously with the 14-h NL treatment were the control group. The timing of first color, visible bud, and anthesis were recorded during flower development, and bract and leaf data were collected at anthesis. Leaf number was unaffected by the SD or NL treatments, suggesting that flower initiation occurred during the 10-day SD treatment before the start of NL treatments; thus, the NL treatments only affected flower development. The timing of first color and visible bud were significantly delayed with the 10-day SD × 11-hour NL treatment relative to the 14-hour NL control; however, first color and visible bud were not delayed with the 17-day SD × 11-hour NL treatment. The 11-hour NL treatment resulted in fewer plants reaching anthesis, and these plants had fewer stem bracts and less bract color development compared with the 12-hour, 13-hour, and 14-hour NL treatments. Therefore, an 11-hour NL is suboptimal for flower development; nonetheless, significant development did occur. The 12-hour NL resulted in less color development than the 13-hour and 14-hour NL treatments in the lowest stem bract positions, but the plants had a commercially acceptable appearance. These results demonstrate that minimal differences in flower development occur with NL ≥12 hours, but that optimal development required NL ≥13 hours.