Browse

You are looking at 141 - 150 of 41,731 items for

Soil-borne diseases and weeds can be inhibited by mustard family (Brassicaceae) cover crops that are mowed and incorporated into the soil with tillage—a process referred to as biofumigation. To determine whether a fall-seeded mustard cover crop produces enough biomass to be a biofumigant in spring, this study measured the amount of biomass produced by a mixture of ‘Caliente Rojo’ brown mustard (Brassica juncea) and ‘Nemat’ arugula (Eruca sativa) grown in three commercial fields and a university research farm in southern New Mexico, USA. This study also determined whether the mustard biomass incorporated in the soil inhibits a weed [Palmer amaranth (Amaranthus palmeri)], but does not affect a cash crop adversely [chile pepper (Capsicum annuum)]. Results indicated that, if the mustard cover crop was seeded before the first frost in fall, mustard cover crops produced biomass in quantities sufficient for biofumigation in spring. Mustard biomass incorporated in the soil reduced the survival and germination of Palmer amaranth seeds. Under greenhouse conditions, chile pepper plants grown in soil with mustard cover crop biomass were larger than chile plants grown in soil without mustard biomass. Chile pepper plants in soil with mustard biomass did not show symptoms of Verticillium wilt (Verticillium dahliae), whereas such symptoms were found on about 33% of chile pepper plants in soil without mustard biomass. These results suggest that a fall-seeded mustard cover crop that is tilled into the soil in early spring is a potential pest management technique for chile pepper in New Mexico.

Open Access

Impressive ornamental features including exfoliating bark and golden fall color are among the reasons why hickories [Carya (Nutt.)] are sought after by horticulturists. Their potential for application in the green industry continues to grow as producers and consumers in the United States become more interested in adopting native plants; however, an absence of knowledge that defines which species are tolerant of abiotic stresses in the landscape limits their use. If production of stress-tolerant hickories increases, they could be used to diversify urban forests and may bolster the resiliency of managed landscapes. We examined the predicted leaf water potential at the turgor loss point to estimate drought tolerance among several species of hickories and pecans adapted to growing in northern climates in the United States. Our hypotheses were that because some bottomland habitats experience seasonal drought in addition to flooding, taxa adapted to these sites may be more drought tolerant than previously assumed, and that the degree of drought tolerance would be variable within species and populations. Predicted mean leaf turgor loss measured in summer across species was −3.38 MPa. Kingnut hickory [Carya laciniosa (F. Michx.) Loud.] exhibited the lowest mean summer leaf turgor loss point −3.64 MPa), whereas pignut hickory [Carya glabra (Mill.) Sweet.] exhibited the highest (−3.20 MPa). Provenance of trees studied influenced estimated drought tolerance of C. laciniosa. Variability between individual trees within each species was observed, suggesting clonal selections of each taxon can be made for drought-prone landscapes. The results of this work imply that all the species studied are at least moderately drought tolerant and should be considered for planting in managed landscapes. Further, species often associated with riparian habitats may exhibit substantial tolerance to drought and should not be excluded from use on drought-prone sites.

Open Access

Every autumn an abundance of leaves from various species of shade trees [e.g., oak (Quercus sp.), maple (Acer sp.)] are collected from urban landscapes. In 1988, shade tree leaves were banned from landfills and combustion facilities in New Jersey because it was an unsustainable practice. Composting and mulching leaves and using them as a resource was proposed. The purpose of this review is to summarize studies of mulching and amending soils with shade tree leaves and their potential to benefit agricultural production. Research sponsored by New Jersey Agricultural Experiment Station on soils and crops found that land application of shade tree leaves was beneficial for building soil organic matter content, protecting against erosion, and controlling weeds when used as a mulch. In general, crop yields and quality were improved with leaf mulch. Collected shade tree leaves on average have a relatively high carbon-to-nitrogen (N) ratio and the potential to cause a temporary deficiency of soil N availability. However, with good agronomic practices and well-timed N fertilization, crops perform well after shade tree leaves have been applied without increasing the recommended N fertilizer application rate.

Open Access

The objective of this study was to investigate the effect of high-tunnel production on preharvest losses and harvest quality of two tomato (Solanum lycopersicum) cultivars. Our results indicate that using high tunnels for tomato production can reduce the preharvest food losses for this crop compared with open-field production, as indicated by increased productivity and percent marketability during the span of three production seasons. The tomato harvest quality did not differ in terms of physical attributes. However, open-field–grown tomatoes demonstrated a significantly greater antioxidant capacity when compared with the high-tunnel–grown tomatoes.

Open Access

Knowledge of essential oil content and composition of leaves of different ages could be used as a guide for the right herbage harvesting stage in rose-scented geranium. Change in essential oil yield and composition with leaf age in rose-scented geranium was investigated in a glasshouse of the University of Fort Hare, during the 2012 and 2014 crop seasons. The topmost five pair of leaves on shoots were separately harvested as treatments. Leaf fresh and dry mass were significantly lower in the topmost and the oldest leaf pair. Essential oil in the topmost pair was colorless; but with advance in leaf age, the oil tended to have a blue-green color. Oil content (on a dry mass basis) from the topmost to the bottom most were about 7.0%, 4.9%, 3.2%, 2.4%, and 1.9%, respectively. Oil yield was consistently the highest in the second youngest pair of leaves, and it progressively declined with leaf age. Contributions of the five leaf pairs from the topmost to the bottom most, in respective order, to the total yield were 19.3%, 22.0%, 17.71%, 12.03%, and 8.5%. The citronellol:geraniol ratio was lower in the young leaves than in the old leaves. Linalool and geranyl formate concentrations were the highest in the youngest leaves, and the opposite was true of isomenthone. The current results indicate shorter regrowth cycles would increase essential oil yield and quality of rose-scented geranium, provided an efficient harvesting technique was innovated.

Open Access

Substrate stratification is a new research area in which multiple substrates, or the same substrate with differing physical properties, are layered within a container to accomplish a production goal, such as decreasing water use, nutrient leaching, or potentially reducing weed growth. Previous research using stratification with pine (Pinus sp.) bark screened to ≤1/2 or 3/4 inch reduced the growth of bittercress (Cardamine flexuosa) by 80% to 97%, whereas liverwort (Marchantia polymorpha) coverage was reduced by 95% to 99%. The objective of this study was to evaluate substrate stratification with pine bark screened to remove all fine particles as the top strata of the substrate and determine its effect on common nursery weeds and ornamental plants. Stratified treatments consisted of pine bark screened to either 1/8 to 1/4 inch, 1/4 to 1/2 inch, or 3/8 to 3/4 inch, applied at depths of either 1 or 2 inches on top of a standard ≤1/2-inch pine bark substrate. An industry-standard treatment was also included in which the substrate was not stratified but consisted of only ≤1/2-inch pine bark throughout the container. A controlled-release fertilizer was incorporated at the bottom strata in all stratified treatments (no fertilizer in the top 1 or 2 inches of the container media), whereas the industry standard treatment had fertilizer incorporated throughout. Compared with the nonstratified industry standard, substrate stratification decreased spotted spurge (Euphorbia maculata) counts by 30% to 84% and bittercress counts by 57% to 94% after seeding containers. The shoot dry weight of spotted spurge was reduced by 14% to 55%, and bittercress shoot dry weight was reduced by 71% to 93% in stratified treatments. Liverwort coverage was reduced by nearly 100% in all the stratified substrate treatments. Compared with the industry standard substrate, stratified treatments reduced shoot dry weight of ligustrum (Ligustrum japonicum) by up to 20%, but no differences were observed in growth index, nor were any growth differences observed in blue plumbago (Plumbago auriculata).

Open Access

The extent to which different agricultural strategies may affect the uptake of potentially toxic elements (PTEs) by cropped plants is not entirely understood at a field scale. This study addresses the effect of seasonality, Trichoderma inoculation alone, or combined with different applications of commercial-grade clinoptilolite (i.e., foliar action, fertigation, and pellet) on the PTE content of early- and late-ripening cultivars of Cucumis melo L. Two similar field experiments were performed in spring and summer. For each cultivar/treatment combination, the input of PTEs [namely, chromium (Cr), copper (Cu), and lead (Pb)] into the soil-crop system through irrigation water, fertilizers, pesticides, and treatment products (i.e., Trichoderma and clinoptilolite products), as well as the PTE content of melon stem, leaves, and fruit, were measured through inductively coupled plasma-optic emission spectrometry (ICP-OES). Neither Trichoderma alone nor with clinoptilolite had a visible effect on PTE uptake by plants, whereas early season cultivation was strongly associated with reduced uptake of Cu and Pb. The high correlation of Cu and Pb content with stem and leaf calcium (Ca) content (used as a proxy for different transpiration rates under different growing seasons) indicated a possible uptake of these metals through Ca nonselective cation channels as a defense against drought stress. Reduced Cu and Pb concentrations were found in early-ripening fruit cultivated in spring. Concerning Cu and Pb risk management, in case of significant contamination in Mediterranean calcareous soils, early-ripening Cucumis melo L. cultivars are suggested instead of late-ripening ones.

Open Access

Aeration and sand topdressing are important cultural practices for organic matter management on golf course putting greens. Many golf courses lack the budget for applications of new sand topdressing material. A 2-year study was conducted to investigate the effect of recycling sand from hollow-tine aerification cores on a sand-based creeping bentgrass (Agrostis stolonifera) putting green soil properties and playability. Treatments included traditional [T (cores removed and sand topdressed)], verticut [V (cores broken up with verticutter)], and recycle [R (cores recycled using a core recycler)]. There were no differences in root zone organic matter, bulk density, soil porosity, infiltration rates, percent sand recovered during mowing, surface firmness, and ball roll distance between treatments during the study. Immediately after aerification treatments, T had the highest percent green cover (PGC) (38.3%) compared with V (26.9%) and R (26.8%), indicating that T offered the least sand present on the surface. Seven days after treatments, there was no difference in PGC (85.3% to 90.1%), indicating all treatments recovered similarly. Alternative aerification treatments V and R could be useful techniques to minimize or reduce the amount of sand used for backfilling core aeration holes without compromising the putting green soil properties and playability.

Open Access

Consumers desire low-input turfgrasses that have tolerance to both shade and drought stresses. Several sedges (Carex sp.) and nimblewill (Muhlenbergia schreberi) are native plants prevalent in dry woodland ecosystems in Oklahoma, USA, and may have potential as alternatives to conventional species in dry shaded turfgrass systems. To evaluate selected species for this purpose, a multilocation field trial was conducted in Stillwater and Perkins, OK. Four sedges [gray sedge (Carex amphibola), Leavenworth’s sedge (Carex leavenworthii), ‘Little Midge’ palm sedge (Carex muskingumensis), and Texas sedge (Carex texensis)] and nimblewill were evaluated as alternative turfs for the study. Alternative turfs were compared against two conventional turfgrasses [‘El Toro’ Japanese lawngrass (Zoysia japonica) and ‘Riley’s Super Sport’ bermudagrass (Cynodon dactylon)]. The conventional turfgrasses outperformed each sedge and nimblewill in coverage and turf quality. Leavenworth’s sedge, gray sedge, and Texas sedge persisted well but did not spread quickly enough to achieve a dense canopy by the end of the 2-year trial. In contrast, nimblewill established quickly but declined in coverage over time. This study demonstrated some sedges and nimblewill can be established and maintained as a low-input turf in dry shade, but development of unique management practices is still required for acceptable performance.

Open Access