Browse

You are looking at 121 - 130 of 29,727 items for

  • Refine by Access: User-accessible Content x
Clear All
Open access

Brian J. Schutte, Abdur Rashid, Israel Marquez, Erik A. Lehnhoff, and Leslie L. Beck

Seaside petunia (Calibrachoa parviflora) is a mat-forming plant species that was recently reported in fall-seeded onion (Allium cepa) in the southwestern United States. To initiate development of herbicide recommendations for seaside petunia in onion, we conducted a study to determine seaside petunia susceptibility to commonly used herbicides for broadleaf weed control after onion emergence. Our study included herbicides applied at below-label rates, which provided insights on seaside petunia responses to reductions in the amount of herbicide available for plant absorption. For herbicides with preemergence activity, our growth chamber study indicated that soil applications of flumioxazin or oxyfluorfen (0.06 and 0.25 lb/acre, respectively) prevented seaside petunia seedling emergence when applied at 0.125×, 0.25×, 0.5×, and 1.0× the labeled rates for onion. Labeled rate treatments of dimethenamid-P (0.84 lb/acre) and S-metolachlor (0.64 lb/acre) inhibited seedling emergence similar to labeled rate treatments of flumioxazin and oxyfluorfen; however, below-label rate treatments of dimethenamid-P and S-metolachlor resulted in diminished control of seaside petunia compared with the labeled rate treatments. Following labeled rate applications of dimethyl tetrachloroterephthalate [DCPA (6 lb/acre)] and pendimethalin (0.71 lb/acre), more than 50% of seaside petunia seedlings emerged compared with the nontreated control. For herbicides with postemergence activity on weeds, our greenhouse study indicated that bromoxynil at 0.37 lb/acre, flumioxazin at 0.06 lb/acre, and oxyfluorfen at 0.25 lb/acre equally reduced growth of seaside petunia plants that were small at the time of spraying (stem length, 1–2 cm). Postemergence control of seaside petunia with oxyfluorfen and flumioxazin decreased as plant size at spraying increased; however, bromoxynil effects on seaside petunia remained high as stem length at spraying increased from 5 to 12 cm. Based on the results of this study, we conclude that promising herbicide programs for seaside petunia in onion include oxyfluorfen or flumioxazin for preemergence control and bromoxynil for postemergence control. These herbicides, alone and in combination, should be evaluated for seaside petunia control and onion phytotoxicity in future field trials.

Open access

Karen K. Schneck, Cheryl R. Boyer, and Chad T. Miller

Dahlia (Dahlia ×hybrida) is an important floriculture crop that has gained popularity in recent years. Greenhouse growers have recently reported a phenomenon known as “dahlia decline,” that can affect potted dahlias in greenhouse production. The crop exhibits graying foliage, root decline, and plant death, and the phenomenon has reportedly caused partial or total crop loss and has no known initiating factor. We hypothesized that plant exposure to supraoptimal root-zone temperatures (RZTs) during production may decrease dahlia root quality, especially above 40 °C and could initiate dahlia decline. Because there is a lack of understanding on how supraoptimal RZT may impact dahlia growth and development, experiments were conducted to evaluate the effects of supraoptimal RZTs on seven dahlia cultivars in Spring 2019 and 2020. Dahlias were grown for 4 to 5 weeks in the greenhouse and then root zones were exposed to ≈22 (control), 35, 40, 45, or 50 °C using a water bath. Root quality was rated before treatment and rated weekly after the hot water bath treatment, along with vegetative growth parameters for 4 weeks. In both years, significant decline in root ratings were observed. ‘XXL Veracruz’ and ‘XXL Sunset’ average root ratings decreased after a 45 and 50 °C treatments in year 2 and both cultivars demonstrated increased root rating averages by 3 weeks after treatment. Cultivars exhibited a significant increase in root rating in the final observations when compared with root ratings taken 1 week posttreatment even if the initial decline after treatment was not significant. Overall plant height was significantly impacted, resulting in shorter heights in both years for all cultivars as treatment temperatures increased to 50 °C in comparison with the control and 35 °C, and a few cultivars exhibited significantly shorter height at 40 and 45 °C. Ultimately, our research did not show typical plant responses that were consistent with reported dahlia decline, but we were better able to characterize dahlia response to supraoptimal RZT.

Open access

Lisa Wasko DeVetter, Suzette Galinato, Troy Kortus, and Jonathan Maberry

Floricane red raspberry (Rubus idaeus) produces biennial canes that are traditionally managed by annual selective removal of previously fruited floricanes and training of primocanes that will bear fruit in the next growing season. This process of pruning and training is labor intensive and costly, and growers would benefit from more economical methods of pruning and training. This 6-year project evaluated the economic viability of alternate-year (AY) production in a commercial floricane red raspberry field in northwest Washington and compared it to traditional, every-year (EY) production to assess whether the former could save costs. Despite savings from reduced chemicals, fertilizers, labor, general farm supplies, and other variable costs, the overall benefits of AY production were not enough to offset losses in revenue resulting from reduced yields under the conditions of this experiment in northwest Washington.

Open access

This supplement contains the Abstracts of Presentations from American Society of Horticultural Science 2021 Annual Conference

Open access

Kaitlyn M. Orde, Rich Marini, Kathleen Demchak, and Rebecca Sideman

The impact of photoselective films on strawberry plants in a low tunnel system has not been well investigated in the northeastern United States, nor have there been studies looking at the effect of mulch color in a plasticulture system. During two separate years (2016 and 2017), we evaluated ‘Albion’ in an annual system with three ground mulch treatments (black plastic, white-on-black plastic, and no plastic) and under six cover treatments. Five of the cover treatments were low tunnel films that varied in their ultraviolet, photosynthetically active, and near-infrared radiation transmission profiles: Tufflite IVTM (TIV), KoolLite Plus (KLP), Trioplast (TRP), and custom-manufactured UV-transparent (UVT) and UV-blocking (UVO) films. The sixth cover treatment was the traditional open bed environment (no low tunnel). ‘Albion’ produced fruit for 18 to 19 continuous weeks during both years until as late as Thanksgiving (24 Nov.) in 2016. Overall, the average marketable yield was greater in 2017 (486 g/plant) than in 2016 (350 g/plant), and it was greater on black mulch than on no mulch (445 vs. 380 g/plant, respectively); white mulch was intermediate (419 g/plant) (P ≤ 0.05). There was not a significant increase in marketable yield under low tunnels compared with open beds. The average fruit mass was greater under KLP and UVO than open beds (TIV and UVT were intermediate), and greater on beds with no mulch than black mulch (white mulch was intermediate). Across cover treatments, plants on black mulch produced more runners than plants on white or no mulch, and the black mulch/open bed treatment generated the greatest number of runners in both years, more than double most other treatments in 2016. The present study demonstrates that mulch selection is important for maximizing the yield of ‘Albion’ in the Northeast region, and that both mulch and cover impact runnering and fruit size. For plant propagators producing ‘Albion’ tips in a field environment, the results of this study suggest they are likely to maximize runner quantity by cultivating plants on black mulch without low tunnel cover.

Open access

Young Soon Kwon, Soon-Il Kwon, Jeong-Hee Kim, Moo Yong Park, Jong Taek Park, and Jinwook Lee

Open access

Jiankun Ge, Linfeng Zhao, Xuewen Gong, Zhiqiang Lai, Seydou Traore, Yanbin Li, Hui Long, and Lei Zhang

Ventilation and soil moisture influence greenhouse cultivation. Experiments were conducted at Xinxiang Irrigation Research Base of the Chinese Academy of Agricultural Sciences, Henan Province, China, to identify how ventilation and irrigation affected the greenhouse microenvironment. To develop ventilation and irrigation protocols that increase crop yield and improve the quality of drip-irrigated tomatoes grown in the greenhouse, three ventilation modes (T1, T2, and T3) were developed by opening vents in different locations in a completely randomized pattern. T1 had open vents on the north wall and roof of the greenhouse. T2 had open vents on the north and south walls and the roof. T3 had open vents on the north and south walls. Three irrigation treatments (W1, W2, and W3) were designed based on the accumulated water surface evaporation (Ep) of a standard 20-cm evaporation pan. The irrigation quantities were 0.9×Ep (W1), 0.7×Ep (W2), and 0.5×Ep (W3). The spatial and temporal distributions of temperature and humidity were analyzed for different combinations of ventilation and irrigation to identify their effects on tomato yield and fruit quality. Major results were as follows: 1) In addition to solar radiation, ventilation had an important influence on Ep and, on a daily scale, ventilation had a significant effect on Ep (P < 0.05). 2) Ventilation had a significant effect on indoor wind speed, but the effect varied during different growth stages. During the flowering and fruit setting stage, wind speed for T2 significantly differed from those of T1 and T3 (P < 0.01). During the harvest stage, the three ventilation treatments had significantly different effects (P < 0.01). A correlation analysis showed high correlation between T2 wind speed and T3 wind speed (R = 0.831), but low correlation between T2 wind speed and T1 wind speed (R = 0.467). 3) The effect of ventilation on greenhouse humidity and temperature was greater than the effect of irrigation. The differences in air temperature among various combined treatments of ventilation and irrigation were significant for the flowering and fruiting stages (P < 0.05), but they were not significant for the late harvest stage (P > 0.05). There were significant differences in humidity on sunny days (P < 0.01), but no significant differences on cloudy or rainy days (P > 0.05). Air temperature at 2 m was greater than canopy temperature, but humidity at 2 m was less than that at canopy level. 4) Irrigation water quantity was positively correlated with tomato yield and negatively correlated with the fruit quality indicators total soluble solids, vitamin C content, organic acid content, and soluble sugars content. Ventilation had an effect primarily during the harvest period; it had no significant effect on yield (P > 0.05). However, it had a significant effect on vitamin C content and the sugar:acid ratio (P < 0.01). The combination treatment of T2W2 is recommended as the optimal treatment for greenhouse tomatoes using drip irrigation to produce an optimal combination of crop yield and fruit quality. This study provides theoretical and technical support for the improvement of greenhouse climate control by optimizing greenhouse ventilation and irrigation techniques to promote tomato yield and improve fruit quality.

Open access

Job Teixeira de Oliveira, Rubens Alves de Oliveira, Priscilla Andrade Silva, and Paulo Eduardo Teodoro

To contribute to commercial classification, this work sought to evaluate correlations between fruit mass and other physical characteristics of blackberry fruit, indicating direct and indirect effects of morphology and physical characteristics on blackberry fruit mass. The variables evaluated were the total mass of the blackberry fruit along with its physical components: fruit length, greater transverse diameter, smaller transverse diameter, fruit area, fruit perimeter, and fruit volume. Results of our analyses show that an increase in fruit length, fruit perimeter, and fruit volume reflects an increase in the total mass of the blackberry fruit. Indirectly, greater values of fruit length, greater transverse diameter, and smaller transverse diameter reflect an increase in the perimeter and volume of the blackberry fruit, thus contributing to larger, more attractive fruit.

Open access

Melike Cirak and James R. Myers

The persistent color (pc) trait in snap bean (Phaseolus vulgaris L.) is a member of the stay-green gene family and falls into the cosmetic subclass. Cosmetic stay-green variants remain green but lose photosynthetic competence during senescence. It is an economically useful trait in snap bean as a result of its effects on pod quality. The trait produces a dark-green, uniform appearance of fresh pods, but has other pleiotropic effects, including a light-green seed color, bleached-white cotyledons on emergence, and foliage and pods that remain green even while senescing. One additional pleiotropic effect is reduced field germination and emergence compared with white- and colored-seeded genotypes. Nevertheless, with the aid of seed-applied fungicides, pc types occupy ≈40% of commercial snap bean acreage in the United States. This research project was aimed at understanding why and how germination and emergence is affected in pc beans. The effect is thought to be related to soil-borne pathogens because fungicide treatment of pc seeds increases germination and emergence rates to levels comparable to treated white- and colored-seeded genotypes. For our experiments, we increased seeds of 45 experimental lines and commercial cultivars (25 of which were pc) under uniform growing conditions. Initial experiments documented that, in the laboratory, all seeds analyzed in a tetrazolium test had high viability. Furthermore, untreated seeds of pc and non-pc types germinated in the laboratory showed no difference in germinability, whereas in the field, germination of pc types was reduced significantly. In addition, pc types showed substantially greater infection rates of seeds and seedlings, with the main pathogen being Fusarium oxysporum Schl. f. sp. phaseoli Kendrick & Snyder. Water uptake by green pc seeds was significantly more rapid than white and colored seeds. Measurements of electrical conductivity revealed that pc types had greater solute leakage than other seed types. When seed anatomic structure was examined, pc types had a significantly thinner testa, especially the osteosclereid layer. The reduction in germination and emergence appears to begin with a thinner, more fragile testa showing increased cracking that may happen during seed harvest and conditioning (but certainly does happen during imbibition), allowing more rapid water uptake during germination that leads to testa rupture. Increased and rapid solute diffusion into the surrounding spermosphere stimulates and attracts pathogens to colonize the seeds before seedlings can become established. Seed handling and conditioning processes before planting could be modified to improve field emergence and stand establishment. Selection for thicker testa may also mitigate some of the damage observed during germination of pc cultivars.

Open access

Thierry E. Besançon

Cranberry (Vaccinium macrocarpon Ait.) cultivars are clonally propagated. Germination of cranberry seeds produces off-type varieties that are generally characterized by lower fruit productivity and higher vegetative vigor. Over time, the productivity of cranberry beds decreases as off-type frequency increases over time. Improved knowledge of cranberry germination biology would facilitate the use of targeted agronomic practices to reduce the emergence and growth of less productive off-types. The influences of light, temperature regime, pH, and water potential on cranberry seed germination were assessed in a growth chamber, whereas the effect of seeding depth on seedling emergence was evaluated in a greenhouse. Seeds stratified for 6 months at 3 °C were used for these experiments. Cranberry germination was influenced by light quality, with maximum germination reaching 95% after 15 minutes of exposure to red light but decreasing to 89% under far-red light. However, light was not required for inducing germination. Cranberry seeds germinated over a range of alternating diurnal/nocturnal temperatures between 5 and 30 °C, with an average maximum germination of 97% occurring for diurnal temperatures of 20 to 25 °C. The length of emerged seedlings was reduced by an average of 75% for pH 6 to 8 compared with pH 3 to 5. Seedlings that emerged at pH greater than 5 showed increasing chlorotic and necrotic injuries and were not considered viable at pH 7 or 8. Germination at 15 °C was reduced when seeds were subjected to water stress as low as −0.2 MPa, and no germination occurred below −0.4 MPa. Seeds incubated at 25 °C were more tolerant to water stress, with at least 70% maximum germination for osmotic potential (ψS) −0.6 MPa or greater. The average seedling emergence was 91% for seeds left on the soil surface or buried at a maximum depth of 1 cm; however, it was null at a burying depth of 4 cm. These results indicate that germination of cranberry seeds in cultivated beds in the northeastern United States likely occurs during the summer months, when temperatures are optimal and the moisture requirement is supported by irrigation. However, timely application of residual herbicide or sanding (a traditional cranberry agronomic practice) of open areas in cranberry beds could help prevent seed germination and reduce minimizing the onset of off-type varieties.