Browse

You are looking at 1 - 10 of 28,335 items for

  • User-accessible content x
Clear All
Open access

Joshua K. Craver, Krishna S. Nemali and Roberto G. Lopez

Indoor production of bedding plant seedlings using sole-source radiation may present value in increasing uniformity and consistency compared with greenhouse production. However, information on physiological acclimation related to growth and photosynthesis in seedlings exposed to high-intensity blue radiation and elevated CO2 is limited. Seedlings of petunia (Petunia ×hybrida) ‘Dreams Midnight’ were exposed to red (peak = 660 nm):blue (peak = 451 nm) radiation ratios of 50:50 (R50:B50) or 90:10 (R90:B10) and radiation intensities of 150 or 300 µmol·m−2·s–1 under two CO2 regimes of 450 or 900 µmol·mol–1. Shoot dry mass (SDM), leaf area index (LAI), internode length, and whole-plant photosynthesis and light-use efficiency (LUE) responses to increasing radiation intensity were measured. In addition, leaf photosynthetic rate (A) was measured at ambient and supra-optimal CO2 concentrations for plants grown under 450 µmol·mol–1 CO2. Our results indicated growth (based on SDM, LAI, and internode length) was lowered for seedlings produced under R50:B50 compared with R90:B10. However, we observed an increase in whole-plant light-saturated photosynthesis (Ag,max) and whole-plant light saturation point (LSP) under R50:B50 compared with R90:B10. In addition, we observed lower LUE below and higher LUE above a radiation intensity of 500 µmol·m−2·s–1 in seedlings grown under R50:B50 compared with R90:B10. Based on our results, seedling growth was lowered under a high proportion of blue radiation mainly due to lower radiation interception (due to lower LAI and shorter internode length) and LUE of intercepted radiation at the intensities used. Higher Ag,max and LSP in R50:B50 compared with R90:B10 under higher radiation intensities was likely in part due to higher LUE. Further investigation revealed A was higher at both optimal and supra-optimal CO2 concentrations under R50:B50 compared with R90:B10, indicating a lack of stomatal effects of a higher proportion of blue radiation on carboxylation and LUE. We hypothesize that higher LUE in R50:B50 compared with R90:B10 under higher radiation intensities is due to improved photochemical quenching from increased biosynthesis of carotenoids and anthocyanins. The results from our study generated fundamental information on growth and photosynthetic responses to excess blue radiation, data that can be further used in optimizing plant production in controlled environments.

Open access

Sanele Fana Kubheka, Samson Zeray Tesfay, Asanda Mditshwa and Lembe Samukelo Magwaza

This study investigated the efficacy of edible gum arabic (GA) and carboxymethyl cellulose (CMC) containing moringa (M) leaf extract as postharvest treatments for maintaining organoleptic quality and controlling Colletotrichum gloeosporioides on ‘Maluma’ avocado fruit. For the quality study, after the fruit was dipped into the treatments: GA 10%, GA 15%, GA 10% + M, GA 15% + M, and CMC 1% + M and uncoated fruit served as control, the fruit were then stored at 5.5 °C [95% relative humidity (RH)] for 21 days, and moved to ambient conditions at 21 ± 1 °C (60% RH) for 7 days to simulate retail condition. Quality parameters that were evaluated include mass loss, firmness, and color changes (L*, a*, b*, respectively), and sensory quality attributes, such as taste, color, mouthfeel, odor, and overall acceptability. Fruit quality study results showed fruit coated with GA 15% + M and CMC 1% + M had lower mass loss (3.66%), retained firmness (62.37 N), and color changes [L* (30.85), a* (−2.33) and b* (7.14)] compared with other treatments. In this biofungicidal study on antimicrobial properties of extracts, treatments against fungi strains using an in vitro test were investigated, which showed treatments of moringa leaf extract, GA 10% + M, and GA 15% + M suppressed radial mycelial growth of C. gloeosporioides by 30%, 28%, and 33%, respectively. In conclusion, our study demonstrated that GA 15% + M and CMC 1% + M retained fruit firmness and lowered weight loss and suppressed mycelial growth of C. gloeosporioides on ‘Maluma’ avocado fruit. These edible coatings could therefore be an alternative organic postharvest coating treatment and could potentially be commercialized as a new organic biofungicide for the avocado fruit industry.

Open access

Ming-Wei S. Kao, Jeffrey K. Brecht and Jeffrey G. Williamson

The physical and chemical characteristics of two melting flesh (MF) cultivars, TropicBeauty and Flordaprince, and two non-melting flesh (NMF) cultivars, UFSun and Gulfking, with advancing maturities, were determined at harvest, after ripening at 20 °C for 7 days (i.e., direct ripening) and after storage at 0 °C for 14 days then ripening at 20 °C for 7 days (i.e., ripening following low temperature storage). The NMF cultivars were able to retain flesh firmness better than the MF cultivars as fruit matured and ripened on the tree and after the two storage treatments. The NMF fruit of the least mature to the most advanced maturity groups (MGs) were ≈2 to 7 times firmer than the MF fruit in the same MGs after ripening in both storage conditions. For both MF and NMF fruit, a significant reduction of titratable acidity (TA) occurred with no significant changes in soluble solids content (SSC) and total soluble sugar (TSS) as maturity and ripening progressed on the tree and after ripening in both storage conditions. Minimum quality standards of “ready for consumption” peaches were used as general guidelines to determine the optimum harvest maturity of all four cultivars. The NMF fruit ripened directly had wider optimum harvest maturity ranges and could be harvested at more advanced stages than the MF fruit. The MF fruit that ripened following low temperature storage needed to be picked at earlier maturity stages than those that were directly ripened. The optimum harvest maturity of NMF UFSun for the low temperature storage treatment was more advanced than that of the other three cultivars due to abnormal softening found in the lower MGs after ripening. Linear correlation analyses showed that the skin ground color (GC) a* values of both MF cultivars and NMF ‘UFSun’ were highly correlated with the flesh color (FC) a* values, suggesting that GC a* values can be an informative harvest indicator for this NMF cultivar instead of the traditionally used FC. The GC a* values also had high linear correlation with TA for all four cultivars, suggesting that TA can be a potential maturity index for both MF and NMF peaches. Significant correlations of GC a* values and flesh firmness (GC-FF) were found in all four cultivars in one year but only in MF peaches in both years, showing that flesh firmness was the most consistent maturity indicator for the MF cultivars in this study.

Open access

Gaofeng Zhou, Bixian Li, Jianmei Chen, Fengxian Yao, Guan Guan, Guidong Liu and Qingjiang Wei

Soil acidification and boron (B) starvation are two dominant abiotic stress factors impacting citrus production in the red soil region of southern China. To evaluate the combined effects of low pH and B deficiency on plant growth, gas exchange parameters, and the concentrations of B and other mineral nutrients, ‘HB’ pummelo seedlings were treated under B deficiency (0 μM H3BO3) or adequate B (23 μM H3BO3) conditions at various low pH levels (4.0, 5.0, and 6.0). The seedlings were grown with modified half-strength Hoagland’s solution under greenhouse conditions for 12 weeks. Plant biomass, leaf area, seedling height, and root traits were remarkably inhibited by low pH and B deficiency stresses, and these parameters were extremely reduced with the decrease in pH levels. After 12 weeks of treatment, typical stress symptoms associated with B deficiency in citrus leaf were observed, with more severe symptoms observed at pH 4.0 and 5.0 than at pH 6.0. Leaf gas exchange parameter measurements showed that leaf photosynthesis was significantly inhibited under both low pH and B-deficient conditions. Notably, the lower the pH level, the greater the inhibition under both normal and deficient B conditions. Further investigations of the mineral nutrient concentrations showed that under both low pH and B deficiency, the concentrations of B and other mineral nutrients were influenced remarkably, particularly at pH 4.0 and 5.0. The physiological and nutritional results of the ‘HB’ pummelo seedlings indicated that low pH can exacerbate the effects of B deficiency to a certain extent.

Open access

Sai Xu, Huazhong Lu and Xiuxiu Sun

Susceptibility to mechanical injury and fast decay rates are currently two main problems of litchi fruit after harvesting. To achieve better postharvest management of litchi fruit, this study aimed to find an effective method of litchi fruit supervision during the circulation process that included mechanical injury detection and storage quality detection. For mechanical injury detection, injury-free litchis without any treatment and litchis with mild and severe mechanical injuries were dropped from 80 and 110 cm high, respectively. The electronic nose (E-nose) response, total soluble solid (TSS), and titratable acidity (TA) of samples were tested on days 0, 1, 2, 3, 4, and 5 after injury at room temperature. For storage quality detection, normal litchis were stored in a cold environment. The E-nose response, TSS, and TA of samples were tested on storage days 0, 3, 6, 10, 15, 19, and 24. The experimental results showed that mechanical injury not only accelerated pericarp browning but also accelerated flavor (TA and TSS) loss. The browning index quickly increased during storage, and the TSS and TA of defect-free litchis changed only barely at room temperature and during cold environment storage. After feature extraction, mechanical injury of litchi can be well-detected by E-nose from day 1 to day 4 after injury. The best mechanical injury detection time of litchi fruit is at day 4 after injury under room temperature storage conditions. After singular sensor elimination and comprehensive feature extraction, the storage time and browning degree, but not TSS and TA, of litchi fruit can be detected by E-nose. E-nose data preprocessing should differ according to the litchi variety and detection target.

Open access

Laura Jalpa, Rao S. Mylavarapu, George J. Hochmuth, Alan L. Wright and Edzard van Santen

Use efficiency of applied nitrogen (N) is estimated typically to be <50% in most crops. In sandy soils and warmer climates particularly, leaching and volatilization may be primary pathways for environmental loss of applied N. To determine the effect of N fertilization rate on the N use efficiency (NUE) and apparent recovery of N fertilizer (APR), a replicated field study with ‘BHN 602’ tomato (Solanum lycopersicum) grown in sandy soils under a fertigated plastic-mulched bed system was conducted using ammonium nitrate as the N source at four different rates (0, 150, 200, and 250 lb/acre). Spring tomato was followed by fall tomato in the same field, a typical cropping sequence in north Florida. Fertigation of N fertilizer was applied weekly in 13 equal doses for both seasons. The highest NUE was 12.05% (spring) and 32.38% (fall), and the highest APR was 6.11% (spring) for the lowest rate of N applied (150 lb/acre). In the fall, APR was unaffected by fertilizer N rates and ranged from 12.88% to 19.39%. Nitrogen accumulation in tomato plants were similar among the three N fertilizer rates applied (150, 200, and 250 lb/acre), though compared with no N fertilizer application, significant increases occurred. Whole plant N accumulation, NUE, and APR declined or remained similar when N rates increased above 150 lb/acre. Additionally, a regression analysis and derivative of the quadratic fresh yield data showed that yields were maximized at 162 and 233 lb/acre N in the spring and fall seasons, respectively.

Open access

Xiaoying Dou, Jinrong Bai, Huan Wang, Ying Kong, Lixin Lang, Fang Bao and Hongzhong Shang

Anthocyanins are major pigments responsible for the color of lily (Lilium sp.) flowers. Anthocyanin synthesis is part of the flavonoid metabolic pathway. Numerous transcription factors, including R2R3-MYBs, basic helix-loop-helix (bHLH), and tryptophan–aspartic acid repeat (also known as WD40 or WD repeat) proteins, known to regulate flavonoid biosynthesis have been identified in various plant species. However, there is limited information available on WD repeat proteins in lilies. In this study, we identified a WD repeat gene in the Oriental hybrid lily ‘Sorbonne’ (Lilium hybrid WD repeat, LhWDR). LhWDR contains no introns, and has a 1100–base pair open reading frame, encoding a putative protein of 370 amino acids. LhWDR was found to be localized in the cytoplasm of transgenic Arabidopsis thaliana root cells. Expression patterns of LhWDR in different organs and at different periods of lily tepal growth revealed that the expression levels of this gene are closely associated with anthocyanin accumulation. A yeast two-hybrid assay demonstrated that full-length LhWDR interacts with the 420 N-terminal amino acids of Lilium hybrid bHLH2. Interestingly, overexpression of LhWDR in A. thaliana led to an upregulation of the dihydroflavonol 4-reductase gene, which is an important structural gene downstream of the anthocyanin pathway. These results indicate that the WD repeat protein LhWDR might interact with a bHLH transcription factor to regulate anthocyanin biosynthesis.

Open access

Leora Radetsky, Jaimin S. Patel and Mark S. Rea

Lighting from red and blue light-emitting diodes (LEDs) is common for crop production in controlled environments. Continuous application of red or blue light at night has been shown to suppress sporulation by Peronospora belbahrii, the causal organism of basil downy mildew (DM), but the suppressing effects of intermittent applications of red and blue LEDs have not been thoroughly researched. This study examined the effects of red (λmax = 670 nm) and blue (λmax = 458 nm) LED top lighting, at two photosynthetic photon flux densities (PPFD = ≈12 and ≈60 µmol·m−2·s−1), using continuous (10-hour) nighttime and two intermittent nighttime exposures, to suppress basil DM sporulation. The two intermittent treatments consisted of one 4-hour exposure and three 1.3-hour exposures spaced 3 hours apart. Continuous nighttime treatments with blue or red LED top lighting at ≈60 µmol·m−2·s−1 were able to suppress basil DM sporulation by more than 99%. At a given nighttime dose of light that did not completely suppress sporulation, continuous lighting was more effective than intermittent lighting, and for these partially suppressing doses, red LEDs were not significantly different from blue LEDs for suppressing sporulation. The present study showed that horticultural lighting systems using red and blue LEDs to grow crops during the day can also be used at night to suppress basil DM sporulation by up to 100%.

Open access

Carol A. Miles, Travis R. Alexander, Gregory Peck, Suzette P. Galinato, Christopher Gottschalk and Steve van Nocker

Hard cider, made by fermenting apple (Malus ×domestica) juice, was at one time the most widely consumed alcoholic beverage in America. Largely abandoned after Prohibition, within the past 2 decades the rise in popularity of craft beverages has led to the reemergence of hard cider as an alternative to beer, wine, and spirits. Today, hard cider represents one of the fastest growing sectors within the craft beverage industry. The recent interest in cider presents additional marketing opportunities for apple growers and businesses currently involved in, or considering entering, the apple cider or craft beverages industries. However, the lack of a strong history or experience in selecting, producing, and using cider apples poses a significant challenge to this emerging market. This article reviews the current state of research in cider apple production, including economic feasibility, mechanized management, and cultivar evaluation and improvement.

Open access

Aikaterini N. Martini and Maria Papafotiou

Limoniastrum monopetalum is an evergreen perennial shrub native to Mediterranean coastal sands and salt marshes. It has adapted to a variety of environmental stresses and is used in traditional medicine and as an ornamental plant. In the present study, an efficient micropropagation protocol for this species was developed to facilitate the production of selected genotypes and promote its wider use. Research has focused on the effects of various cytokinin types [benzyladenine (BA), zeatin, 6-furfurylaminopurine (kinetin) or 6-γ-γ-dimethylallilopurine (2iP)] and concentrations (0.0–4.0 mg·L−1) and various NaCl concentrations (0.0–20 g·L−1) during all stages of in vitro culture. For in vitro establishment, Murashige and Skoog (MS) medium supplemented with 0.5 mg·L−1 BA and 0.0 or 5.0 g·L−1 NaCl was most appropriate (100% explant response, 3–4 shoots per explant, 2 cm shoot length). The best results for shoot multiplication (100% response, 9 shoots per explant, 0.8–1.0 cm shoot length) were obtained with low (0.5 mg·L−1) BA or relatively high (2.0 mg·L−1) kinetin concentrations in the medium; however, 0.5 mg·L−1 kinetin should be preferred in the case of production of multiple rooted microshoots during one stage. The addition of NaCl at relatively low concentrations (2.5 or 5.0 g·L−1) in a medium supplemented with 0.5 mg·L−1 BA doubled shoot multiplication but did not improve shoot elongation (100% explant response, 16 shoots per explant, 0.8 cm shoot length). For in vitro rooting, half-strength MS medium supplemented with 1.0 mg·L−1 IBA was most appropriate (97% rooting, 9.4 roots per microshoot, 1.2 cm root length). Regarding the effects of NaCl on in vitro rooting, microshoots were relatively tolerant to NaCl concentrations up to 10.0 g·L−1. The effects of NaCl depend on the micropropagation stage; they are synergistic during shoot multiplication and tolerant during rooting. However, explants responded satisfactorily in its absence, indicating that NaCl was not necessary as a medium component. Ex vitro acclimatization and establishment of plantlets was 100% successful in a mixture of peat:perlite 1:1 or 2:1 (v/v).