Browse

You are looking at 61 - 70 of 29,731 items for

  • Refine by Access: All x
Clear All
Open access

Ronald S. Revord, J. Michael Nave, Ronald S. Revord, J. Michael Nave, Gregory Miller, Nicholas Meier, J. Bryan Webber, Michael A. Gold, and Tom Wahl

The Chinese chestnut (Castanea mollissima Blume) and other Castanea species (Castanea spp. Mill.) have been imported and circulated among growers and scientists in the United States for more than a century. Initially, importations of C. mollissima after 1914 were motivated by efforts to restore the American chestnut [Castanea dentata (Marsh.) Borkh.], with interests in timber-type characters and chestnut blight resistance. Chestnut for orchard nut production spun off from these early works. Starting in the early 20th century, open-pollinated seeds from seedlings of Chinese chestnut and other Castanea species were distributed widely to interested growers throughout much of the eastern United States to plant and evaluate. Germplasm curation and sharing increased quite robustly through grower networks over the 20th century and continues today. More than 100 cultivars have been named in the United States, although a smaller subset remains relevant for commercial production and breeding. The University of Missouri Center for Agroforestry curates and maintains a repository of more than 60 cultivars, and open-pollinated seed from this collection has been provided to growers since 2008. Currently, more than 1000 farms cultivate seedlings or grafted trees of the cultivars in this collection, and interest in participatory on-farm research is high. Here, we report descriptions of 57 of the collection’s cultivars as a comprehensive, readily accessible resource to support continued participatory research.

Open access

Satoru Motoki, Takumi Taguchi, Ayaka Kato, Katsuhiro Inoue, and Eiji Nishihara

Asparagus is a popular vegetable rich in healthy functional components. However, the process of its production leaves ferns from aboveground parts and roots from underground parts as unusable parts, and this is an issue to be resolved. In our previous studies, large amounts of rutin were noted in the cladophylls and storage roots (brown and epidermis), and the protodioscin content was high in buds, in the soil-covered section of spears, and in rhizomes. This study was conducted to examine the distribution of growth-inhibitory activity and mineral contents in different parts of asparagus. Correlations, including representative functional components (rutin and protodioscin), were examined. The results suggest there are differences in growth-inhibitory activity of different parts of asparagus. The growth-inhibitory activity was strong in the buds, rhizome, and absorptive and storage roots, and weak in the cladophylls and lateral branches. The percent N content of the aboveground part of asparagus was high compared with that in the aboveground part of other crops. Although the percent K content was similar to the mean of the aboveground part of other crops, it was higher than that in general green manure, suggesting the residual stems and leaves of the aboveground part of asparagus are effective green manure. In the aboveground part of asparagus, the rutin content and percent N and K content were higher, whereas growth-inhibitory activity tended to be low, suggesting that when no disease developed in the aboveground part, it can be used as an organic substance.

Open access

Devdutt Kamath, Yun Kong, Chevonne Dayboll, and Youbin Zheng

Short campanula (Campanula portenschlagiana ‘PGM Get MEE’®) stock plants present a difficulty in machine-harvesting of cuttings. Light adjustment may be an effective approach to mediate plant elongation. Two experiments were performed to 1) investigate whether short-term (five weeks) daily 24-h dynamic lighting (DL) with red and blue light-emitting diodes (LEDs) can promote elongation without inducing flowering, and 2) explore whether DL can be used to modify stock plant morphology to improve the cutting quality and rooting success in a controlled environment. Two lighting treatments were used: concurrent lighting (CL) with red (85%) and blue (15%) LEDs (RB) at 100 µmol·m−2·s−1 and DL with red (170 µmol·m−2·s−1), blue (30 µmol·m−2·s−1), and RB (100 µmol·m−2·s−1) LEDs sequentially at three different lighting stages, respectively, in both experiments. In Expt. 1, at final harvest of stock plants, the side branches were longer under DL compared with CL, but the five (= 2 + 2 + 1) weeks of 24-h daily lighting resulted in visible flower buds under both treatments. Based on the results of Expt. 1, a second experiment (Expt. 2) was conducted with the same cultivar and experimental conditions, but with a shorter photoperiod (10 h·d−1) for 11 (= 8 + 2 + 1) weeks. In Expt. 2, at final harvest, DL compared with CL caused more upright side branches, and reduced the dry biomass of side branches with one branching order and leaf chlorophyll content. However, the harvested cutting quality and rooting success were similar between both treatments. In both experiments, side branch number under DL was greater compared with CL at the end of the first lighting stage. Stock plants under DL were taller from the second lighting stage on to final harvest compared with CL, and the final heights of stock plants under DL met the target for machine-harvest in both experiments. Therefore, if the lighting strategy is further optimized, DL can potentially benefit controlled-environment production of campanula cuttings.

Open access

Mingxia Wen, Peng Wang, Weiqin Gao, Shaohui Wu, and Bei Huang

Selenium (Se) fertilizer has a good effect on many field crops, but there are few reports on the application of Se fertilizer on citrus. We investigated the effects of 0 mg/L (CK, water treatment), 50 mg/L, 100 mg/L, 150 mg/L, and 200 mg/L sodium selenite aqueous solutions on the growth, nutrition, and fruit quality of 15-year-old citrus unshiu (Citrus reticulata Blanco cv. Succosa). The results showed that a low concentration of Se fertilizer promoted the growth and development of the citrus plan, and a high concentration of Se fertilizer was found to slightly inhibit the growth and development of the plant. Among the different treatment groups, 150 mg/L selenium fertilizer showed have the best effect on these evaluated parameters. The results thus suggest that 150 mg/L of Se fertilizer promotes the formation of chlorophyll in the leaves of the test plant and increases the longitudinal and transverse diameter of the fruits and weight of single fruit, significantly enhancing the activity of antioxidant enzymes in the leaves, promoting the absorption of nutrients in the leaves, increasing the contents of total sugar and vitamin, and decreasing the acidity in the fruits and the pericarp thickness. It also promoted the accumulation of the total selenium content in the leaves and fruits and consequently improved the quality of the fruits. These results showed that appropriate concentration of Se treatment can improve the activity of antioxidant enzymes to enhance plant stress resistance, regulate the content of sugar and acid in fruits, and improve the quality of fruits.

Open access

Haiyan Wang, Rong Zhang, Weitao Jiang, Yunfei Mao, Xuesen Chen, Xiang Shen, Chengmiao Yin, and Zhiquan Mao

The study here aimed to investigate the effects of pre-winter ditching and freezing-thawing on soil microbial structure in different soil layers of old apple orchards. A total of 30 samples were obtained from 3 Nov. 2016 to 9 Mar. 2017. The relative abundance, alpha diversity, community structure of fungi, and the relationship between environmental factors and microbial community structure were analyzed, and the greenhouse experiments were used for further verification. Results showed that the number of actinomycete and total bacterial colonies decreased, whereas the number of fungi sustained decreased, resulting in a higher bacteria/fungi ratio. The percentage of Fusarium initially decreased, then later increased by 11.38%, 3.469%, 2.35%, 2.29%, and 3.09%. However, Fusarium levels were still 9% lower on 9 Mar. 2017 that on 3 Nov. 2016. Both the abundance and diversity of the community were higher in the upper soil than in the lower. The main environmental factor contributing to the percentage of Fusarium change was average temperature (AT), although highest temperature (HT) and water content (WC) also had an impact. The Malus hupehensis Rehd. seedlings growing in lower soil were more vigorous than that in upper soil. In sum, pre-winter ditching and freezing-thawing in old apple orchards can reduce the abundance percentage of harmful Fusarium and promote the growth of M. hupehensis Rehd. seedlings.

Open access

Andrey Vega-Alfaro, Paul C. Bethke, and James Nienhuis

Production of Capsicum annuum peppers is often limited, especially in tropical environments, by susceptibility to soil pathogens including Ralstonia solanacearum. Grafting desirable cultivars onto selected rootstocks can increase adaptation to abiotic stress and is an alternative to pesticides for managing soilborne pathogens. Cultivars of two other pepper species, Capsicum baccatum and Capsicum chinense, are tolerant or resistant to an array of soilborne pathogens and have potential as rootstocks; however, knowledge of how interspecific grafting may affect scion fruit quality is lacking. Flowering time, yield, and fruit quality characteristics were evaluated in 2017 and 2020 for C. annuum cultivars Dulcitico, Nathalie (2017), Gypsy (2020), and California Wonder used as scions grafted onto Aji Rico (C. baccatum) and Primero Red (C. chinense) rootstocks, including self-grafted and nongrafted scion checks. In 2020, the rootstocks per se were evaluated. The two rootstocks (‘Aji Rico’ and ‘Primero Red’), three scions, and self- and nongrafted scions were evaluated using a factorial, replicated, completely randomized design in fields at the West Madison and Eagle Heights Agricultural Research Stations located in Madison, WI, in 2017 and 2020, respectively. Differences among the main effects for scion fruit quality characteristics were consistent with cultivar descriptions. No scion × rootstock interactions were observed. Rootstocks did not result in changes in total fruit number, yield, fruit shape (length-to-width ratio), or soluble solids of scion fruit compared with self- and nongrafted checks. The rootstock ‘Primero Red’ increased fruit weight and decreased time to flowering regardless of scion compared with self- and nongrafted checks. All scions were sweet (nonpungent) cultivars and both rootstocks were pungent cultivars. No capsaicinoids were detected in the fruit of sweet pepper scions grafted onto pungent pepper rootstocks. The results indicate that interspecific grafts involving ‘Aji Rico’ and ‘Primero Red’ will not have deleterious effects on fruit quality characteristics of sweet pepper scions.

Open access

Yen-Cheng Chiang and Pei-Yi Weng

The rapid pace of modern life, as well as chronic work and academic overloading, contribute to our society’s progressively increasing stress levels. Chronic stress can affect both physical and mental well-being. Numerous studies have confirmed that viewing a nature-based video presentation can reduce stress and result in attention recovery. However, the discourse has been primarily focused upon stimulation applied over a single duration, rather than over various durations. Therefore, the present study explored the effect of various viewing durations with regard to forest-related videos on stress reduction and attention recovery. Before the videos’ presentation, the participants’ stress and distraction levels were increased through stimulation. Data on stress, attention, and relaxation were collected through the implementation of the State–Trait Anxiety Inventory and an electroencephalogram instrument. Equal numbers from the 90 participants (i.e., 30) were assigned to watch a short, medium-length, or long video (5, 10, and 20 minutes in duration, respectively). The viewing of 20-minute forest-related videos significantly promoted stress reduction and physiological relaxation. The present findings advance the understanding of the relationship between viewing nature scenes duration and psychophysiological states; thus, they serve as a reference for future research on the natural-dose concept, as well as the development of relevant activities and courses.

Open access

Lexie McClymont, Ian Goodwin, Desmond Whitfield, Mark O’Connell, and Susanna Turpin

Vegetative growth, orchard productivity, fruit quality and marketable yield were evaluated for rootstock (D6, BP1 and Quince A), tree density (741–4444 trees/ha), and training system (Open Tatura trellis, two-dimensional vertical and three-dimensional traditional) effects on young trees of the blush pear cultivar ‘ANP-0131’. ‘ANP-0131’ is a vigorous scion and vegetative growth, precocity, and yield were influenced by the selected rootstocks. Tree density and training system treatments exerted a substantial effect on canopy radiation interception while increasing tree density improved yield. Increasing tree density from 2222 (high density) to 4444 (ultra-high density) trees/ha did not improve cumulative yield. Crop load affected fruit size, such that “marketable” yield (yield of fruit weighing between 150 and 260 g) was greatest for trees on D6 rootstock and trained to Open Tatura trellis at high and ultra-high densities.

Open access

Hongli Wei, Chao Gao, Jie Qiu, Li Long, Biao Wang, Lu Yang, and Yang Hu

This study aimed to investigate the flowering biological characteristics, floral organ characteristics, and pollen morphology of Camellia weiningensis Y.K. Li. These features of adult C. weiningensis plants were observed via light microscopy and scanning electron microscopy (SEM). Pollen viability and stigma receptivity were detected using 2,3,5-triphenyltetrazole chloride (TTC) staining and the benzidine–hydrogen peroxide reaction method. C. weiningensis is monoecious, with alternate leaves and glabrous branchlets. Its flowering period lasts 2 to 4 months, and the flowering time of individual plants lasts ≈50 days, with the peak flowering period from the end of February to the middle of March. It is a “centralized flowering” plant that attracts a large number of pollinators. Individual flowers are open for 12 to 13 days, mostly between 1230 and 1630 hr, and include four to six sepals, six to eight petals, ≈106 stamens, an outer ring of ≈24.6-mm-long stamens, an inner ring of ≈13.4-mm-long stamens, one pistil, and nine to 12 ovules. The flowers are light pink. The style is two- to three-lobed and 16.6 mm long, showing a curly “Y” shape. The contact surface of the style is covered with papillary cells and displays abundant secretory fluid and a full shape, facilitating pollen adhesion. The pollen is rhombohedral cone-shaped, and there are germ pores (tremoids). The groove of the germ pore is slender and extends to the two poles (nearly reaching the two poles). The pollen is spherical in equatorial view and trilobate in polar view. The pollen vitality was highest at the full flowering stage, and the stigma receptivity was greatest on days 2 to 3 of flowering. The best concentration of sucrose medium for pollen germination was 100 g/L. The number of pollen grains per anther was ≈2173, and the pollen-to-ovule ratio was 23,034:1. C. weiningensis is cross-pollinated. Seventy-two hours after cross-pollination, the pollen tube reached the base, and a small part entered the ovary. The time when the pollen tube reached the base after pollination was later than that in commonly grown Camellia oleifera. The results of this study might lay an important foundation for the flowering management, pollination time selection, and cross-breeding of C. weiningensis.