You are looking at 61 - 70 of 29,815 items for

  • Refine by Access: All x
Clear All
Open access

Anna J. Talcott Stewart, Terri Boylston, Lester Wilson, and William R. Graves

Many members of the citrus family (Rutaceae) are valued for the aromatic compounds emitted by their flowers. Ptelea species are unusually cold-hardy members of the Rutaceae, but conflicting descriptions of the fragrance of their unisexual flowers may discourage the use of these trees. We analyzed floral volatiles and human response to these chemicals to test the hypothesis that the fragrance of staminate and pistillate flowers of these species differs. Gas chromatography and mass spectrometry showed that most volatile chemicals emitted by flowers of Ptelea trifoliata and Ptelea crenulata are monoterpenes, sesquiterpenes, and esters. Most volatiles were emitted from flowers of both sexes, but ethyl benzoate and estragole were emitted only from pistillate flowers. When concentrations of aromatics differed between sexes, they were higher for pistillate flowers, except for cis-3-hexenyl butanoate and an unidentified terpene. For P. crenulata and P. trifoliata, respectively, 81% and 77% of survey responses were from volunteers who liked the fragrance. Panelists most frequently described the scent of flowers of P. crenulata of both sexes with the words citrus, lime, and sweet. Panelists distinguished between pistillate and staminate flowers of P. trifoliata, describing the odor of pistillate flowers most frequently with the words damp-earthy, spicy, and sweet; staminate flowers were perceived as light, fresh, grassy, and pleasant. This work represents the first analysis of floral volatiles of P. crenulata and resolves conflicting prior reports regarding the floral fragrance of P. trifoliata. We conclude that differences among people rather than the sex of flowers account for conflicting prior reports of floral fragrance. The scents of flowers of P. crenulata and P. trifoliata appeal to most people and are horticultural assets of these trees.

Open access

Phillip A. Wadl, Timothy A. Rinehart, Richard T. Olsen, Benjamin D. Waldo, and Joseph H. Kirkbride Jr.

The genus Chionanthus, known as fringetrees, is a member of the olive family (Oleaceae). Chionanthus virginicus is an understory tree or shrub with a wide range in forests of the eastern United States and is used as an ornamental tree that is known to be free of insects and disease in the wild. The species is tolerant of a wide range of environmental conditions, and there is interest in developing new cultivars with improved horticultural traits, such as tree form or upright growth habit and superior flowering display that are widely adapted. To identify genepools in the native range of C. virginicus for use in breeding programs, the genetic diversity and population structure were assessed for 274 individuals from 12 locations in four states (Florida, Maryland, North Carolina, and Texas) using 26 simple sequence repeats (SSRs). An average of 12.54 alleles/locus were detected, allelic richness averaged 2.80. Genetic differentiation was 0.11, indicating moderate differentiation among subpopulations. Despite the high genetic diversity and low population differentiation, Bayesian clustering analysis identified six genetic groups that match the geographic distribution of collection sites. Analysis of molecular variance indicated that most (82%) of the variation is explained within individuals, and 11% and 7% of the variation is due to differences among individuals within populations and among populations. Analysis of isolation by distance across all samples showed a weak positive relationship between geographic distance and genetic distance. The C. virginicus samples analyzed in this study indicate there is sufficient diversity for germplasm collection for use in breeding programs. Given the relatively moderate genetic differentiation, there are not likely to be unique islands of genetic diversity that may be missed when gathering parental materials for a breeding program

Open access

David San Fratello, Benjamin L. Campbell, William G. Secor, and Julie H. Campbell

The COVID-19 pandemic altered the way many consumers and businesses transacted business. Concerning the green industry, many households began gardening and/or purchased more green industry products. As the pandemic ends and households begin to return to normal, green industry firms need to understand this new normal. Using an online national survey of households, we assessed which households were more likely to remain in the market after entering during the height of the pandemic (2020). Findings indicated that younger consumers (i.e., Millennials and younger individuals who were born in 1985 or after) were less likely to indicate they always garden (before the pandemic) but more likely to have started gardening during the pandemic and perceived that they would not continue to garden as states returned to normal (2021). This age group was also more likely to not have gardened in 2020, but they intended to garden in 2021. This finding shows a dichotomy in gardening preferences in this young age group. Further findings indicated that race, household income, number of children in the household, and the impact of the pandemic on the household also help explain the household’s decision to garden or not.

Open access

Ryan M. Warner

Stevia (Stevia rebaudiana) is an herb grown commercially for the extraction of intensely sweet-tasting, non-caloric, steviol glycosides produced primarily in the leaves and used as a sugar substitute. While most stevia production occurs as an industrial field crop, more recently, consumer demand for stevia for home gardens and patio containers has increased. Research on how environmental inputs impact growth, branching, and flowering of stevia under greenhouse conditions for potted plant production is currently lacking. A series of experiments was conducted to quantify how methods to promote branching, fertilizer concentration, photoperiod and temperature impact branch production, growth and development, and flowering of stevia. Both manual decapitation and ethephon application increased lateral branch production, though hard pinching (cutting plants back to leave four nodes) yielded a more desirable plant architecture. Neither temperature nor fertilizer concentration impacted the number of branches produced by plants given a hard pinch. Shoot dry biomass was similar at fertilizer concentrations (applied at each watering) of 50, 100, and 200 mg⋅L−1 N, but decreased at 300 or 400 mg⋅L−1 N. Stevia responded to photoperiod as a facultative short-day plant, with earliest flowering occurring, both in days to flower and the number of nodes produced before flowering, at photoperiods <13 hours. The number of nodes produced on the longest branch increased as temperature increased from 17 to 26 °C. Plant height and longest branch length were shorter at 17 °C than at higher temperatures. The results of these studies indicate that for potted plant production, stevia should be grown under a photoperiod of 14 hours or longer with moderate nutrient levels, a minimum temperature of 20 °C, and plants should receive one or more manual pinches to promote branching.

Open access

Shahla Mahdavi, Esmaeil Fallahi, and Gennaro Fazio

Selection of dwarfing rootstocks that facilitate optimum production of high-quality fruit is crucial in modern high-density apple orchards. In addition to tree growth and yield, rootstocks can influence fruit maturity of scion cultivars in apples. In this study, the impact of 17 rootstocks on fruit maturity, yield, and quality attributes of ‘Aztec Fuji’ apples (Malus domestica Borkh.) at harvest were evaluated in a season when all trees were in a “full-crop” condition. Keeping sealed fruit at room temperature, a typical climacteric pattern was observed in ethylene evolution, respiration, and oxygen consumption, peaking after 5–7 days in fruit from trees on all rootstocks. During the ripening period, ethylene evolution and respiration rates in fruit from trees on Supp.3, G.3001, and G.202 were often in the high-range category, whereas those on CG.4004, CG.4214, G.41N, and B.9 were in the midrange category and those on M.9Pajam2, M.26EMLA, and G.11 were in the low-range category. Evolved ethylene and respiration in fruit from trees on M9.T337 steadily and slowly increased from 7 days after harvest (7DAH) to 13 days after which harvest (13DAH) ethylene sharply increased, signaling occurrence of climacteric peak, while respiration declined after the peak of 13DAH. In fruit from trees on most rootstocks, the rates of oxygen consumption had inverse relationships with the rates of respiration, so that fruit from trees on M9.T337 had higher and those on G.41N and Supp.3 had lower rates of oxygen consumption. Trees on G.41N, CG.4004, and M.26EMLA had higher and those on CG.4003 had lower yield per tree than trees on other rootstocks. Trees on B.9 and M.9T337 were most yield efficient among trees on all rootstocks. Trees on CG.4004 had larger fruits than those on other rootstocks. Considering all fruit maturity, quality, and yield attributes, CG.4004 seems to be a good choice of rootstock for ‘Aztec Fuji’ under the conditions of this study.

Open access

Craig E. Kallsen and Dan E. Parfitt

Excessive boron (B) in soil and water is a problem for pistachio (Pistacia vera L.) production in the San Joaquin Valley (SJV) of California. Although amenable, leaching of B requires more water than chlorine (Cl) or sodium (Na) and is increasingly difficult as B in irrigation water increases. The lack of subsurface drainage to the ocean increases soil salinity in many growing areas, especially on the west side of the SJV where B is often excessive natively in the soil and water. Pistachio rootstocks that can tolerate or exclude B may be a partial solution. For the past decade in California, the dominant rootstock has been seedlings and clonal selections of University of California Berkeley 1 (UCB-1), which is a hybrid of P. atlantica × P. integerrima. This reliance on a genetically similar pool of rootstocks has constrained Pistacia’s genetic potential for adapting to high-salt environments. This study compared scion and rootstock leaflet B concentration of novel hybrid experimental rootstocks with variable percentages of P. vera and P. integerrima heritage with UCB-1. Rootstocks with P. vera heritage limited B in both rootstock and scion leaflets compared with UCB-1. In six trials conducted over several years, leaflet B in ungrafted hybrid rootstocks having 62.5% to 75% P. vera and 25% to 37.5% P. integerrima heritage had 27.6% to 43.1% lower B leaflet concentration than did UCB-1. Depending on the experiment and year, grafted rootstocks having 37.5% P. vera and 62.5% P. integerrima heritage had 46.8% to 70.8% lower B scion leaflet concentration than did UCB-1. Genetic variation in B uptake in Pistacia species and interspecific hybrids, and among individual seedlings within populations, allows the breeding of pistachio rootstocks more tolerant of excess B.