Browse

You are looking at 61 - 70 of 33,403 items for

  • Refine by Access: All x
Clear All
Open access

Leynar Leyton Naranjo and Carol D. Robacker

Abelia R. Brown is an important genus of flowering landscape shrubs. Native to China, the genus is characterized by evergreen or semievergreen shrubs with a flowering period from spring to frost; white or pink flowers; and yellow-green, gold, red, or dark-green foliage, depending on the season (Dirr, 2011). Abelia is disease, pest, and deer resistant; heat and drought tolerant (Scheiber and Robacker, 2003); nontoxic to humans; attractive to a variety of pollinators (Mach, 2018); and a noninvasive species that rarely sets seeds naturally, make Abelia an important genus for

Open access

Cindy Rouet, Joseph O’Neill, Travis Banks, Karen Tanino, Elodie Derivry, Daryl Somers, and Elizabeth A. Lee

Field winterhardiness is a critical trait in rose cultivars (Rosa ×hybrida) grown in northern climates. Although the molecular basis of cold hardiness has been well documented in model organisms such as Arabidopsis thaliana, little is known about the genetics and mechanisms underlying winterhardiness in roses. This research aims to explore the genetic control of winterhardiness for application in breeding programs using quantitative trail loci (QTL) analysis in two biparental rose populations derived from cold-hardy roses of the Canadian Explorer Series Collection. Field winterhardiness was assessed as a complex trait with winter damage and regrowth recorded in multiyear and multilocation trials in Ontario and Saskatchewan, Canada. In addition, this research explored the relationship between field measurements and electrolyte leakage recorded under artificial conditions. Electrolyte leakage had limited utility for application in rose breeding programs as a substitute for field evaluation, but did enable identification of QTL associated with potential cold hardiness candidate genes. A QTL for electrolyte leakage mapped to a genomic region that harbors a CBF1-like transcription factor. A total of 14 QTLs associated with field winter damage and regrowth were discovered, and they explained between 11% and 37% of the observed phenotypic variance. Two QTL associated with winter damage and regrowth overlapped with a known QTL for black spot (Diplocarpon rosae) disease resistance, Rdr1, in an environment under high disease pressure. Due to the complexity of field winterhardiness and its direct reliance on intertwined factors, such as overall plant health, moisture status, snow cover, and period of prolonged sub-zero temperatures, field trials are the ultimate measurement of field winterhardiness. Transgressive segregation was observed for all traits, and it was most likely due to complementary gene action. Field winter damage and regrowth were highly heritable in single environments, but they were subject to genotype × environment interaction resulting from pest pressure and severe climatic conditions.

Open access

Haijing Fu, Wangbin Ye, Ruiyang Zhao, Yingxuan Dai, and Ling Wang

The genus Iris includes ≈300 species widely distributed in the temperate regions of the Northern Hemisphere, and many of them are attractive ornamentals that are largely used as groundcover plants for gardening and landscaping (Boltenkov et al., 2020). However, the leaves of most Iris species are high and prone to lodging easily, thus affecting their ornamental appearance. Therefore, dwarf Iris plants are desirable and popular. Because dwarf cultivars of some Iris species are relatively rare (Huang et al., 2003), there is a strong demand for dwarfing breeding of

Open access

Heidi Hargarten, James Mattheis, and Loren Honaas

Production of high-quality tree fruit requires management of tree health and vigor during orchard establishment, especially with regard to soil-borne pathogens. Available strategies for the mitigation of soil-borne diseases include chemical fumigants, Brassicaceous seed meal (SM) soil treatments, and the use of disease-tolerant rootstock genotypes. It has been documented that superior disease suppression can be achieved using specific combinations of rootstock genotype and soil treatment that, in part, alter the soil microbiome. However, regardless of soil treatment strategy or rootstock genetics, sublethal levels of phytotoxic compounds are known to have negative effects on the reproductive output of plants. Yet the effects of SM amendments and the resultant restructuring of the soil microbiome on fruit quality are not well studied. Thus, our objective was to explore the effects of pathogen suppression strategies on at-harvest and postharvest fruit quality of ‘Gala’ apples (Malus domestica) by observing effects of both rootstock genetics [‘Malling 26’ (‘M.26’) vs. ‘Geneva 41’ (‘G.41’)] and soil treatment strategy (fumigation vs. SM). We observed that rootstock genotype generally appeared to have a stronger effect than soil treatment strategy on at-harvest fruit quality and postharvest outcomes. Further, although we did observe some fruit quality differences in each year of the study, there was no discernible pattern from year to year. We therefore conclude that, in our study, soil treatment does not have a consistent, significant influence on ‘Gala’ apple fruit quality, and importantly, efficacious ARD control using SM is without an apparent downside regarding fruit quality.

Open access

Sijie Wang, Haoyi Wu, Haiying Li, Yaxin Zhao, Juan Zhou, Chen Lian, Jingran Lian, and Yan Ao

Bunge, a member of the Sapindaceae family, is a deciduous shrub or tree that is primarily distributed in north China. Xanthoceras sorbifolium is considered to be an ideal oil-rich seed tree species that has significant ecological, economic, and medicinal value (Ao, 2012; Liu et al., 2017). It can grow well in cold, barren environments, and even in saline-alkali land. It is also a valuable ornamental landscaping plant because of its beautiful form and luxuriant, colorful flowers. It has a long blooming period and flowers later than apricot (Armeniaca vulgaris Lam.) and peach

Open access

Lenny Wells and Andrew Sawyer

Site selection is key to successful establishment of fruit and nut trees. The upland soils on which pecan [Carya illinoinensis (Wangenh.) K. Koch] trees are commonly planted in the southeastern United States consist of sites that have recently been in row crop cultivation or pine or hardwood timber. Anecdotal observation suggests that orchards planted to land converted from cultivated row crop fields tends to result in better tree growth and survival than those on land recently converted from timber plantations or wooded areas. The objective of this experiment was to compare growth of first- through third-leaf pecan trees planted on sites with varying land-use history [row crop cultivation or pine (Pinus spp.) tree production up to the year before planting] and to determine the effects of supplemental addition of phosphorus (P), potassium (K), and zinc (Zn) at planting on the two sites. These results suggest that the soil conditions of sites recently in pine timber production limit the growth and development of pecan trees planted to those sites. These limitations result from soil acidity and an exhaustion of soil nutrients and loss of organic matter on pine sites, making the uptake of nitrogen (N), P, K, and calcium (Ca) challenging during the establishment phase unless soils are improved before planting.

Open access

Chunlan Li, Panyun Xu, Aote Zhou, Jinlong Song, Yuxia Wu, and Tianming He

This study investigated the ploidy of ‘Mianli’ with flow cytometry and the traditional chromosome squash technique. Its pollination biology and the occurrence and formation of embryo sacs before and after flowering were observed in paraffin sections to characterize its embryo sacs. The intersimple sequence repeat (ISSR) marker technique was used to test the uniformity of progeny of ‘Mianli’ treatments. The chromosome number of ‘Mianli’ is 2n = 2x = 34. The ploidy results were consistent with those identified by flow cytometry. ‘Mianli’ is male-sterile, and the anatropous ovule has double integuments. ‘Mianli’ can bear fruit normally and produce fertile seeds under the treatments of emasculation with bagging or no emasculation with bagging, but the seed yield is very low and significantly lower than that under artificial pollination or natural pollination. The developmental process of embryo sacs under natural pollination showed that most megasporocytes develop into mature sexual embryo sacs through meiosis and a few megasporocytes degenerate. Some sexual embryo sacs continue to develop into embryos after fertilization, and some sexual embryo sacs are aborted. In addition, new aposporous initial cells are generated irregularly at each stage from the emergence of megasporocyte to the end of sexual reproduction or abortion. The observation of the development of embryo sacs under emasculation with bagging showed that after pollination is blocked, mature sexual embryo sacs degenerate, and aposporous mononucleate embryo sacs appear around the degenerated sexual embryo sacs or in the peripheral tissues. Then, the process of proembryonic masses developing into spherical embryo was observed. A genetic uniformity analysis of progeny of ‘Mianli’ using ISSR was performed. The results showed that the progeny population under emasculation with bagging has high consistency at the molecular level, with some plants having full consistency with the female parent’s banding pattern, demonstrating consistency with the maternal genetic characteristics. The progeny under artificial pollination or natural pollination do not have the same banding pattern as the female parent. Because there is no pseudogamy, all of the progeny are true hybrids. In summary, it seems that ‘Mianli’ only has sexual reproduction in the presence of pollen, and only a few ovules are stimulated to undergo apomixis after pollination is blocked.

Open access

Bernadine C. Strik and Amanda J. Davis

A 6-year trial was established in Oct. 2015 in western Oregon to evaluate the effects of pruning and trellising on yield, hand- and machine-harvest efficiency, fruit quality, and costs of pruning and harvest of ‘Legacy’ highbush blueberry (complex hybrid based largely on Vaccinium corymbosum L. and Vaccinium darrowii Camp.). Pruning treatments began in Winter 2017–18 (before year 3) and continued each year through 2020–21 (year 6). Treatments included 1) recommended pruning for ‘Legacy’, removing less wood and leaving more short, thin laterals and a denser bush than is typical for most northern highbush cultivars (“control” with standard T-trellis), 2) control pruning and training to a V-trellis (“V”), and 3) standard northern highbush style pruning (“HB” with standard T-trellis). Fruit were harvested solely by hand in 2017 and 2018, and by hand for early harvests followed by machine for later harvests from 2019 to 2021. In most years, more wood was removed from HB- than control-pruned plants. On average, HB-pruned plants had a lower yield (6.7 kg/plant) than control-pruned plants, particularly those trained to a V-trellis (7.5 kg/plant). There was little effect of pruning treatment on fruiting season and hand- (7% drop) or machine-harvest efficiency (23% drop). Pruning method had no effect on berry weight, diameter, total soluble solids, or firmness over the study period or percent internal bruising in 2019. All of the ‘Legacy’ pruning methods studied required more time (358 to 561 h·ha−1) than the industry standard, ‘Duke’ (247 h·ha−1). Control and HB pruning did not differ in time to prune per unit area; however, in 2 of the 4 years, adding a V-trellis increased pruning time. On average, control and HB pruning had a similar cost per harvested fruit ($0.20 to $0.21/kg), whereas control pruning with a V-trellis ($0.23/kg) cost more than HB pruning. All treatments required the same amount of time to harvest (12.7 and 0.5 min·kg−1 for hand and machine picking, respectively). Total cost to prune and harvest ranged from $1.63/kg in 2019 to $3.43/kg in 2021 but was most heavily influenced by harvest costs rather than pruning. The one-time installation cost of $637/ha for the V-trellis was not compensated for by increased yield or efficiency of pruning or harvest compared with the control method with a standard T-trellis. Pruning according to recommended methods for ‘Legacy’ (control) increased yield without having a negative effect on fruit quality and had similar or lower costs to prune per kg of fruit harvested as typical northern highbush pruning.

Open access

Xinwang Wang, Keith Kubenka, Warren Chatwin, Tommy Thompson, and L.J. Grauke

‘Pueblo’ is a new pecan (Carya illinoinensis) cultivar released and patented by the U.S. Department of Agriculture, Agricultural Research Service (USDA ARS). This cultivar is the first to be released with a compact tree size, great precocity, early nut maturation, high yield potential, and scab resistance. ‘Pueblo’ should perform well in the West, central Texas, and as far north as southeastern Kansas. ‘Pueblo’ is the first of three patented pecan cultivars in the USDA ARS Pecan Breeding Program (U.S. Patent Application Serial No. 17/506,091). Parties interested in licensing ‘Pueblo’ should contact license@usda.gov with any questions. Graft

Open access

Lijuan Fan, Wangbin Ye, Haijing Fu, Ruiyang Zhao, Gongfa Shi, Rutong Lv, Lei Yan, Zhuowen Li, and Ling Wang

Irises have high ornamental values because of their decorative flowers and the elegance of their elongated leaves (Roguz et al., 2020; Xu et al., 2017). For example, Iris sanguinea has a blue flower color that offers great potential for landscaping. It also has strong disease resistance, and is cold and moisture tolerant (Bi et al., 2011; Shang and Wang, 2014). Thus, it could be widely used for gardening and landscaping in northeastern China. These factors have encouraged the development and release of new iris cultivars. Recently, new cultivars with various